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ABSTRACT

This paper proposes a new methodology solving for the ill posed linear systems. Key
idea is that the system matrix is regarded as an image data. Applying the discrete
wavelet transformation to this system matrix yields an approximate inverse matrix. Thus,
we succeeded in solving the ill posed linear systems. An example concerning with the
inverse problem in magnetostatic fields demonstrates the usefulness of our

methodology.
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INTRODUCTION

Most of the inverse problems appearing in engineering and science are reduced into
solving the ill posed linear systems. Various numerical methods have been proposed for
solving the ill posed systems. In biomagnetic fields, the least squares and minimum
norm methods are widely used[1,2,3]. The former is applied to finding the most
dominant single field source, i.e. current dipole, and the latter is used to identifying the
field source distributions. Further, new techniques based on the neural networks have
been proposed[4,5].

On the other side, discrete wavelets transform method has been proposed in order to
carry out the wave form analysis as well as image data compression. Wavelets
transform makes it possible to collect the dominant elements of the image data in a

particular region of the image data spectrum. Previously, we have succeeded in
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obtaining the approximate solutions of ill posed linear systems by applying the wavelets
transform{6,7]. In this solution strategy, the two dimensional wavelets transform is
applied to the system matrix which is regarded as one of the two-dimensional image
data, then collecting the most dominant elements on the system spectrum matrix yields
an approximate inverse matrix in the wavelet spectrum domain. Inverse wavelet
transform of this approximate inverse matrix gives an approximate inverse matrix of the
ill posed system. Thus, we have succeeded in obtaining the approximate solution of il
posed linear systems.

In this paper, we apply the higher order analyzing wavelets to the ill posed linear
systems. Several techniques are proposed to overcome the serious problems that are
confronted to the higher order wavelets application to the ill posed linear systems. As a
result, we have succeeded in obtaining the approximate solutions with higher accuracy.

BASIC WAVELETS SOLUTION
Let us consider a typical ill posed system of equations
Y=C-X, M

where Y,X,C are the n-th order input, m-th order output vectors and n by m system
matrix, respectively. The number of equation # is generally smaller than the number of
unknowns m in the inverse problems so that Eq.(1) is a typical ill posed system of
equations.

Wavelets transform to Eq.(1) is carried out by

Y'=CX, @)
Y=Y, C=W_-CWw, 6 X=W_X )
where W,, W,, are the n and m-th order wavelets orthogonal transformation matrices,
respectively.
Figures 1(a) and 1(b) shows the example of n=32 by m=128 system matrix C and its
wavelet spectrum C”, respectively.
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(b) Wavelet spectrum matrix
Fig. 1. Example of the system matrix and its wavelet spectrum

By taking the top 32 by 32 square region in Fig.1(b) into account for an approximate
inverse matrix, it is possible to obtain an approximate solution vector X in Eq.(1).
This is the basic wavelet solution strategy for the ill posed system of equations. Wavelet
solution strategy using low order base function, e.g. 2nd order Daubechies or Haar,

yields a stairway approximate solution shown in Fig. 1(b), while exact solution is shown

in Fig. 1(a).
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Fig. 2. Typical wavelets solutions.
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However, employment of higher order base functions, e.g. 4th , 8th order Daubechies,
yields the solutions smoothed but containing large error at the edges of the solution
vectors as shown in Figs. 1(c) and 1(d).

IMPROVED WAVELETS SOLUTION

In order to clarify the error caused by the higher order base functions, we checked up a
nature of data compression by the wavelets transform. As a result, it is clarified that the
data compression process by using the higher order wavelets to a data having a
discontinuity at the beginning or ending part always accompanies with a spiky error.
Further, this spiky error has been caused by an assumption of periodical data
structure[8]. One of the ways to change the data structure is to add the zero elements to
the data vector. This is because the zero added data may be regarded as the periodic data
having zero duration. The results are shown in Figs. 3(a) and 3(b) which correspond
well to the exact solution in Fig.2(a).
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Fig.3. Improved solutions using the higher order base functions

This zero addition method makes it possible to apply the wavelets strategy to the system
of equations whose system matrix is not composed of the order not the power of 2, e.g.
n=25 and m=50. Figures 4(a) and 4(b) show the system matrix (n=25, m=50) and
wavelet spectrum of its zero added system matrix.
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(a) 25 by 50 system matrix (b) Wavelet spectrum of a zero added system matrix
Fig. 4. Example of the system matrix and its wavelet spectrum

Figures 5(a) and 5(b) show the solutions using the Daubechies 4™ and 8™ order base
functions, respectively.
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Fig. 5. Improved wavelet solutions(25 by 50)

To check up the nature of wavelet solution, we applied a multiresolutional analysis to
the solution shown in Fig. 5(b). Figure 6 shows the results of multiresolutional analysis.
The level in wavelet multiresolutional analysis simply corresponds to the space
frequency. Thereby, Fig.6 suggests that the solution in Fig. 5(b) is composed of the low
frequency components. In the other words, the wavelet solution neglects the higher
frequency components contained in the exact solution.
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Fig. 6. Multiresolutional analysis of the solution in Fig. 5(b).

Figure 7(a) shows an exact solution containing a high frequency, while the wavelet
solution shown in Fig. 7(b) does not include the high frequency components. Thus, it is
obvious that the wavelet solution is one of the approximate solution neglecting the high
frequency components in the exact solution.
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Fig.7. Comparison of the wavelet and exact solution containing high frequency
component.

CONCLUSIONS

In this paper, we have proposed the wavelet strategy for the ill posed inverse system of
equations. The two dimensional wavelet analysis has been applied to the rectangular
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system matrix regarded as an image data. And the approximate inverse matrix of the
system has been obtained from a square part of the wavelet spectrum. Applying the
inverse wavelet transform to the approximate inverse matrix in the wavelet spectrum
space yields the approximate inverse matrix in the original space. The example
concerning to the current estimation from the locally measured magnetic fields has
demonstrated the validity of our approach. Further, we have proposed a methodology in
order to improve the wavelets solutions obtained by means of image matrix. Key idea is
to add the zero elements to the system matrix. This has made it possible to remove the
noise caused by data compression. - Thus, we have succeeded in obtaining the
dramatically improved solutions of the ill posed system of equations.
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