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STRACT _
. The wavelet compression technique was applied to
turbulent image processing for reducing physical storage and
Extracting the compact dominant features in this study. The two
-compression methods, called zone and threshold compression,
Were employed. It was found that a high order wavelet basis
provided good compression performance for compressing
durbulent images and two compression methods exhibited
dimost same performance. It was realized that the compressed
image had both lower compress ratio and larger correlation
f%:,ﬁleﬁicients. By changing compression ratio the compressed
hages exhibited different scale structures in turbulent jet. This
ndicated clear that large-scale structure dominates the jet.

INTRODUCTION
#*= The turbulent jets exhibit complex structure with a wide
range of coexisting scales and a variety of shapes in the
lamics. To understand the turbulent mixing process, various
easures of the isosurface geometry from image appeared from
4980’s. Catrakis and Dimotakis (1996) reported two-
~ dimensional, spatial measurements of the jet-fluid concentration
field in liquid-phase. Recently, Li et al. (1998, 1999) developed
an application of two-dimensional orthogonal wavelets to
turbulent image analysis. The multiresolution turbulent
Structures and the coherent structure were extracted and
visualized. It is well known fact that some correlation between
neighboring elements exists in turbulent image, and indicates
that image contains the redundancy of information in some
extent. This redundancy allows us to compress the turbulent
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image for economy in storing, transmitting or further processing
with high speed and to extract the compact dominant features.

The Intemational Standard Organization (ISO) has
proposed the JPEG standard (Wallace, 1991) for still image
compression and MPEG standards (Gall, 1991) for video
compression. These standards employ discrete cosine transform
(DCT) to reduce the spatial redundancy present in the images or
video frames. We note that DCT has the drawbacks of blocking
artifacts, mosquito noise and aliasing distortions at high
compression ratios (Wallace, 1991; Coifman et al., 1992).
However, this method that was often used in turbulent image is
only to eliminate the low intensity pixels of image file. Because
the low intensity pixels contribute little information about
turbulent structure, this type of image compression has very
little significant.

Over the past decade discrete wavelet transform (DWT)
has emerged as a popular technique for image processing
(Mallat, 1989). DWT has high decorrelation and energy
compaction efficiency. The blocking artifacts and mosquito
noise are absent in a wavelet-based code due to their
overlapping basis functions. The aliasing distortion can be
reduced with a proper choice of wavelet filters. In addition, the
basis functions are localized in both the spatial and frequency
domains. Hence, they are better matched to the human visual
system (HVS) characteristics. Generally, a wavelet providing
optimal performance for the whole image is selected.

Although a wide variety of wavelet-based image processing
has been reported in the literature, few applications can be
found in the area of fluid mechanics. Recently, Li et al. (1999)
improved spatial resolution and reliability in the particle image
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velocimetry (PIV) system using the wavelet image compression
technique.

In this paper there are two motives to develop an
application of wavelet compressing technique to turbulent
image. One is to minimize the physical storage, and the other is
to develop a visualized tool for extracting compact dominant
features from turbulent images. Certainly, the noise in images
can also be reduced.

In wavelet-based image compression, the compression
performance depends on the choice of wavelets. To investigate
the performance of the different compression methods and
choice of the wavelet bases, we first apply two wavelet
compression techniques with Coifman and baylkin wavelet
bases to the digital-imaging photograph of turbulent jet. Then,
the dominant features of turbulent structures are discussed when
changing compression ratio of compressing images.

WAVELET COMPRESSION TECHNIQUE
Let us consider a two-dimensional scalar field f(¥) and

isotropic mother wavelet y/(i) by ftreating X = (x,,xz) as
vector. The family of wavelets y/; a(i), which is translated by
position parameter b € R* (b =(b;,5,)) and dilated by scale

parameter a € R* , is written as

a

w;,,(i)=%w(i—b] - 0

The two-dimensional continuous wavelet transform of
7 (%) can be defined as

wrb.a= [ [ rGw;, G0
[ J:f(f)w(i L

The coefficients of continuous wavelet transform W' (5, a)
can be interpreted as the relative contribution of scale a to the
scalar field f(%) at position b .

If the wavelet is admissible, the inversion formula is

f(i):L [; J: f Wy (b,aw; ,(:)ad’b

- J:f f a Wy (b, ay( }Iadzb ¥

@

It is well known that black-and-white images are often used
to describe turbulent structures, and are expressed in a discrete

numerical form as a function f(x,,x,) over two dimensions in ;
which the function value f (x, ,x2) represents the “gray scale”

value of the image at the position or pixel values (x,,,). 3

Therefore, we must considered to use the discrete type of
wavelet transform. In the discrete wavelet transform, the }

dilation parameter g and the translation parameter b both take 3
only discrete values in Eq. (2). For any scale a we choose the '5
integer (positive and negative) powers of one fixed dilation 4

parameter a,>1, i.e., a; , and different values of m correspond ,
to wavelets of different widths. It follows that the discretization

of the translation parameter b should depend on m: narrow 4
wavelets (high frequency) are translated by small steps in order §
to cover the whole field, while wider wavelets (lower }
frequency) are translated by large steps. Since the width of is §

proportion to ag , we choose therefore to discretize b by 1
b =#byal, where by is fixed. Starting from wavelet basis
Ymn (x)=ag"’/2y/(a5”’x—nbo) the corresponding discretely f

family of wavelets is simply to take the tensor product functions
generated by two one-dimensional bases:

‘Pm,,n,;mz,nz (xl »%2 )= Wm,,n, (xl )/’mz,nz (X2 ) (4) f

For some very special choices of y/(x) and ay, b, the
Vo ,,,(x) constitutes an orthonormal basis. In particular, if we
choose ay=2, by=1, then there exist y/(x) with good physics- §
frequency localization properties, such that s

qJ"’n-”l;"'zl'z (xl’x2)= 2—(m,+mz)/2w(2-m| 1 —nl)//(Z""z X3

constitutes an orthogonal basis. In this basis the two variables x; ]
and x; are dilated separately. The oldest example of a function §
w(x) for which the y,, ” (x) constitutes an orthogonal basis is §

the Haar function, constructed long before the term “wavelet”
was coined. In the last ten years, various orthogonal wavelet
bases, e.g., Meyer basis, Daubechies basis, Coifman basis, j
Battle-Lemarie basis, Baylkin basis, spline basis, and others, §
have been constructed. They provide excellent localization 3
properties in both physical and frequency spaces. 3

Therefore, the two-dimensional discrete wavelet transform £
is given by d

W nomir, = ZZf(xl,Xz) Fapimnbiort). © §

—nz). (5)

The reconstruction of the original scalar field can be :"
achieved by using
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The total energy of the scalar field is given by summing
over all scales and components as following

) - X T Y Wi F - ®

my my n ny

... In general, the energy of image field is highly concentrated
i@ a small number of wavelet coefficients. The image
compression is usually defined as the representation of image
ing fewer basis function coefficients than were originally
given, either with or without loss of information. The basic
et];od to compress the image based on wavelets is to setting
vayélet coefficients of modes with insignificant energy to zero.
ere are usually following two methods. One way, called the
e compression method (ZCM), can be summarized in three

1) Compute wavelet coefficients Wf, , ... a, Tepresenting an

‘image in orthonormal wavelets basis.

Specify the number of wavelet coefficients M to retain, that
%is, fix the compression ratio M/N where N is the total
number of wavelet coefficients before compression and
delete all other wavelet coefTicients.

) The image is reconstructed from nonzero wavelet
coefficients based on inverse wavelet transform.

s-Another way is called the threshold compression method
LT M), and the procedure has following steps:

Compute wavelet coefficients WY, , representing an

WMy
_ image in orthonormal wavelets basis.
) Fix the threshold C, so that any wavelet coefficient is set to

gjpe. ZETO if ]Wf_l Iy om J,2l<C . If the number of nonzero wavelet
“-coefficients is M, the compression ratio may be determined

image based on nonzero wavelet
v coefficients using inverse wavelet transform.

~ We can then adjust the number of wavelet coefficients M or
¢ threshold C to vary the compression ratio and to extract
inant structure. For evaluating the compressed feature, the
elation coefficients between the original image and
ipressed image is employed in this paper.

i

K _!‘!QICE OF WAVELET BASES

The choice of wavelet basis and its order is important in
hieving good compressed performance. In order to investigate
e “effect of different orthogonal wavelet basis on the
mpressing flow image, the following sets of compactly
Upported orthonormal wavelets are used in this study.
) Coiflets wavelet with orders 18, 24 and 30;

(2) Baylkin wavelet with orders 6, 12 and 18.

These orthogonal wavelet bases have respectively their
families that are defined by different index number or the
number of wavelet’s coefficients. As the index number or order,
i.e., the number of wavelet’s coefficients, increases, the wavelet
becomes smoother closer to a smoothly windowed harmonic
function, and the wavelet’s Fourier transform becomes
increasingly compact, ie., are compact in the frequency
domain.

In order to evaluate the compression feature and study the
dominant features of turbulent image, the digital-imaging
photograph of turbulent jet that were experimentally obtained
by Catrakis and Dimotakis (1996) is used in this paper. As
described in Catrakis and Dimotakis’ paper (1996), experiments
were carried out in liquid-phase turbulent-jet flows, and images
of slices, which relied on laser-induced fluorescence digital-
imaging techniques, through the three-dimensional scalar filed
of round momentum-driven turbulent jets were obtained.
Transverse sections in the far field of the jet, at downstream
position z/d=275 (jet-nozzle diameter d is 2.54mm), were
recorded on a cryogenically cooled 1024x1024 pixels CCD
camera.

The black-and-white image of jet slice with Re=4.5x10’ in
Fig.l is expressed in a numerical form as a function f(x;,x,)

over two dimensions in which the function value j(xlo x3 )

represents the “gray scale” value of the image at the position or
pixel values (xo, yo). The “gray scale” values are then

normalized to one.

Fig.1 image of a turbulent jet, 256X256 pixels with 8-
bit grayscale
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Fig.2 Compression performance for two compression
methods with various wavelet bases

Figure 2 summarizes the performance of various wavelet
families’ bases and orders when compressing jet image of Fig.1
based on the zone compression and threshold compression
methods (abscissa: compression ratio, ordinate: correlation
coefficients). These two methods exhibit almost the same
compression performance. It is evident that as increasing
compression ratio, the correlation coefficients decreased and
dropped quickly near compression ratios 6.25% and 1.56%.
These two points may indicate important compression ratios in
the turbulent image. It may be also found in Fig.2 that the best
subjective performance was obtained with high order wavelet

wbases (Coiflets wavelet with orders 18 to 30 and Baylkin

wavelet with order 18), because a high order wavelet base can
be designed to have good frequency localization that in turn
increases the energy compaction. The regularity of wavelet also
increases with its order. In addition, more vanishing moments
can be obtained with a higher order wavelet base. On the other
hand, although a lower order wavelet base is expected to have a
better time localization and therefore preserve the crucial edge
information, lower order wavelet bases for compressing
turbulent images show smaller correlation coefficients than that
of higher order wavelet bases at same compression ratios.

In the following, we only discuss the features of the
compressed image using the Coiflets basis of order 30. To study
how the energy of the turbulent image is distributed, wavelet
coefficients Wf,, , ., », of image (Fig.1) are plotted in Fig.3
(abscissa and ordinate: levels, the white and black: wavelet

coefficients). The highest wavelet coefficients is displayed as a
white and the Jowest as black. It is observed that the larger
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Fig.3 Wavelet coefficients of jet image based on
wavelet bases Coiflet30

Fig. 4 Compressed jet image with compression ratio

45.6% and correlation coefficients 0.994 based on the

threshold compression method with Coiflets wavelet
of order 30




magnitude of Wf,, nymyn, OF energy of the image concentrates

i rroughly the smaller level range. So we can use wavelets to do
tter compression.

VISUALIZATION OF TURBULENT STRUCTURE
Figure 4 shows a compressed image based on the threshold
mpression method with compress ratio 45.6% and correlation
ﬁ' icients 0.994, which is realized by fixing the threshold of
scale value C=0.1. At this compression ratio the
dancy of information and insignificant information on the
all-scale structure are reduced. The image may almost keep
ame spatial resolution as original image.
igures 5-7 shows a sequence of reconstructed compression
ages based on the zone compression method, which differ in
e number of wavelet coefficients that have been kept. These
%gs are reconstructed from the remaining 25%, 6.25% and
, of the 65536 wavelet coefficients and exhibit higher
elation coefficients with 0.988, 0.971 and 0.944,
pectively. These correlation coefficients of compressed
bulent images show higher compression performance than
of PIV images (Li et al., 1999). From the spectra analysis
the compressed images, it is found that three compressed
ges represent turbulent structures within the range of scale
3mm, 3.6~143mm and 7.2~14.3mm, respectively.
omparing Fig.5 with Fig.4, the higher correlation coefTicient is
pt, although the compression ratio becomes lower, This
¢ keeps still a relatively high spatial resolution that closes
e original image, and shows the turbulent structure with
ple 0.8~14.3mm. For reducing compression ratio further,
6 exhibits the medium-scale structure with scale
4.3mm. Peaks appearing in the image correspond to
jtions of eddies. This image may be described as the “zoom-

nergy-contammg vortices. From the larger correlation
cnept in Fig.7, it can say that large-scale  structure

At last we discuss the compressed image with help of lower
tder wavelet basis. Figure 8 shows a compressed image based
i zBaylkm wavelet basis of order 6. This image is reconstructed
rom the remaining 1.56% of the 65536 wavelet coefficients
d !ias correlation coefficients of 0.937. It is evident that the
nage shows non-smoothness distribution and information on
“the’ large-scale structure is hardly obtained. This is because
Baylkin wavelet basis of order 6 is nowhere differentiable,
~although it is continuous and compact in the physical domain.
Therefore, it is very important that orthonormal wavelet basis
ust be smoothness function when compressing or analyzing
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Fig.5 Compressed jet image with compression ratio

25% and correlation coefficients 0.988 based on the

zone compression method with Coiflets wavelet of
order 30

Fig.6 Compressed jet image with compression ratio
6.25% and correlation coefficients 0.971 based on the
zone compression method with Coiflets wavelet of
order 30



Fig.7 Compressed jet image with compression ratio
1.56% and correlation coefficients 0.944 based on the
zone compression method with Coiflets wavelet of
order 30

Fig.8 Compressed jet image with compression ratio
1.56% and correlation coefficients 0.937 based on the
zone compression method with Baylkin wavelet of
order 6

the turbulent image.

CONCLUSIONS
The wavelet compression technique was applied to

turbulent jet processing for reducing physical storage and

extracting the compact dominant features in this study. The
following main results are summarized.

(1) A high order wavelet basis provides good compression
performance for compressing turbulent images, because §
they have good frequency localization that in tumn increases :
the energy compaction. 4

(2) The zone and threshold compression methods exhibit almost
same performance, and the compressed image with lower
compress ratio and larger correlation coefficients is ;
obtained.

(3) Significant information on the turbulent structure is kept in
the compressed image. ]

(4) By changing compress ratio the compressed images exhibit 3
turbulent structures in different broader scales. !
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