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MODELLING OF NONLINEAR  INDUCTOR  EXHIBITING  HYSTERESIS  LOOPS 

AND  ITS  APPLICATION  TO  THE  SINGLE  PHASE  PARALLEL  INVERTERS 

Y. Saito, H. Saotome, S. 

Abstract - A  modelling  of  magnetodynamic  fields  taking 
into  account  dynamic  hysteresis  loops  was  previously 
proposed  for  predicting  three-dimensional  magnetody- 
namic  fields  in  electromagnetic  devices  [ll.  This 
method  is  now  applied  to  construct  the  lumped  circuit 
model  for  nonlinear  inductor  exhibiting  dynamic  hyster- 
esis  loops.  The  lumped  circuit  model  of  nonlinear 
inductor  is  introduced  into  the  simulation  model of 
single  phase  paralell  inverter,  whose  various  charac- 
teristics  are  calculated  and  compared  with  experimental 
measurements.  Good  agreement  is  obtained. 

INTRODUCTION 

Depending  upon  the  circumstances,it  may  be  sufficient 
to  assume  that  the  hysteresis loss can  be  represented 
in  terms of a  resistance loss. Ilowever  it is  most 
difficult  to  construct a model  having  the  accuracy  for 
analysis  of  nonlinear  circuits  such  as  ferroresonant 
circuit  [21.  Chua  and  Stromsmoe  worked  out  the 
hysteresis  model  for  elecronic  circuit  studies [ 31 .  
Also,  Talukdar  and  Bailey  worked  out  the  hysteresis 
model  for  power  system  studies 141. 
In  this  paper,  the Saito, Saotome  and  Yamamura  model 

of nonlinear  inductor  is  generalized  to  include  the 
transformers,  and  applied to the  simulation  of  single 
phase  parallel  inverter. 

MODELLING  OF  NONLINEAR  INDUCTOR 

The  magnetic  field  equation  exhibiting  dynamic  hyster- 
esis  loops  is  given  by 

1 1 dB H = (-)B -I- (-)-, 
IJ s dt 

where  H,B,v,s  and  t  denote  the  magnetic  field  intensi- 
ty,  flux  density,  permeability,  hysteresis  coefficient 
and  time,  respectively.  The  term  (l/v)B  in (1) repre- 
sents  the  magnetic  saturation  property  of  iron  and  the 
other  term  (l/s)dB/dt  represents  the  dynamic  hyster- 
esis  property  of  iron.  Moreover  a  trace  of  the  peak 
points  on  the  hysteresis  loops  yields  a  single  valued 
function  of  permeability 1-1 as  shown  in  the  left-hand 
curve  of  Fig. 1. Also,  a  trace  of  the  peak  points on 
the  loops  representing  the  relation  between  the  mag- 
netic  field  intensity H and  time  derivative  of  flux 
density  dB/dt  yields  an  another  single  valued  function 
of  hysteresis  coefficient s as  shown  in  the  right-hand 
curve of Fig. 1 [1,2]. 
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The  hysteresis  phenomenon  is  inevitably  observed  accom- 
panying  with  the  time  derivative  of  flux  density  dB/dt. 
When  the  magnetic  field  intensity  H  in (1) is  gradually 
reduced  to zero, then  the  right-hand  term  (l/p)B+(l/s)dB 
/dt in (1) must  be  reduced  to  zero.  By  considering an 
infinitesimally  small  dB/dt point  on  the  trace  of  peak 
points  representing  the  relatiron  dB/dt  and H in  Fig. 1, 
the  magnetic  field  intensity  Hs=(l/s)dB/dt  tends  to keep 
a  non-zero  value.  Thereby,  the  term  (l/p)B  or  B  in (1) 
must  take  a  non-zero  value  when  the  term  dB/dt in (1) is 
an  infinitesimally  small  value.  This  means  that (1) is 
possible  to  exhibit  the  static  magnetic  hysteresis  phe- 
nomenon. 
Since  the  magnetic  hysteresis  phenomenon  is  always  ob- 
served  accompanying  with  the  time  derivative  of  flux 
density  dB/dt,  the  magnetization  history  is  implicitly 
included  in  the  formula (1) as  an  initial  value  of B. 
When  the  time  derivative of  flux  density  dB/dt  takes 
the  same  absolute value,  then  the  term  Hs=(l/s)dB/dt  in 
(1) takes  the  same  absolute  values  for  descending  and 
ascending  branches  of  the  hysteresis  loops.  However,  the 
time  derivative of flux  density  dB/dt  takes  an  negative 
value  for  descending  and  an  positive  value  for  ascending 
branches of the  hysteresis  loops.  Thereby,  the  total 
magnetic  field  intensity H in (1) reduces  to  H=(l/p)B-(l 
/s)dB/dt  for  descending  and  to  H=(l/p)B+(l/s)dB/dt  for 
ascending  branches  of  the  positive  flux  density  (B>O) 
regions  in  hysteresis  loops.  This  means  that  the  magnet- 
ic  flux  density  B  corresponds  to  the  different  magnetic 
field  intensities  for  descending  and  ascending  branches 
of the  hysteresis  loops. 

hysteresis  phenomenon  which  is  consistent  with  the  ex- 
perimental  results. 

Thus,  the  formula (1) is  possible  to  reproduce  the 

In  order  to  derive  the  lumped  circuit  model  of  non- 
linear  inductor,  consider  a  simple  reactor  as  shown  in 
Fig.  2(a).  By  considering (1) and  Fig.  2(a), it  is 
possible  to  write  the  following  equation as 

D 
IHdl = I [ (-)B + (-)-]dl, 1 dB 

s dt 0 O F !  

where  D  and  dl  denote  the  mean  length  of  flux  path  and 
infinitesimally  small  distance  along  the  flux  path D, 
respectively.  With  A  denoting  the  cross-sectional 
area  normal  to  the  flux  path,  the  relationship  between 
the  flux  density  B  and flux'+ is  given  by  B=+/A. Thus, 
the  right-hand  term  in  (2)  can  be  rewritten  by 

Fig. 1. Nonlinear  magnetization  curves. 
The  authors  are  with  College  of  Engineering,  Hosei 
University, 3-7-2 Kajinocho  Koganei,  Tokyo 184, Japan. 

where  the  inductance  Li  and  resistance  Ri  are  defined 
by L~=IJA/D and  Ri=SA/D,  respectively.  Moreover,  the 
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Fig.  2.  (a)  Schematic  diagram  of  nonlinear  inductor 
and  (b)  its  circuit  model. 
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left-hand  term  in  (2)  can be represented  in  terms  of 
the  impressed  voltage e, current  i,electric  resistance 
r, flux @ and  number  of  turns of coil n, that  is 

D 
JHdl = ni = n[e - n-1 d$ 
0 dt 

By  substituting ( 3 1 ,  (4) into  (2),  it  is  possible  to 
write  the  following  relation: 

By  means of (51,  it is  possible  to  derive  the  lumped 
circuit  model  of  nonlinear  inductor  as  shown  in  Fig. 
2(b),  where  the  transformer  shown  is  an  ideal  trans- 
former. A s  shown in Fig. 1, the  permeability p and 
hysteresis  coefficient s are  respectively  the 
functions of the  flux  density B and  the  time  deriva- 
tive of flux  density  dB/dt.  Furthermore,  the  re- 
lationship  between  the  flux  density  B  and  flux $ is 
given  by  B=$/(Cross-Sectional  Area  Normal  to  the  Flux 
Path),  therefore  the  inductance  Li  and  resistance  Ri 
in ( 5 )  are  formally  expressed  as 

where  f(*)  denotes  the  single  valued  function of ( * I .  
If  a  new  set  of  varibles  X=n@,  L=n2Li,  R=n2Ri  is 
substituted  into ( 5 ) ,  then  the  lumped  circuit  model of 
nonlinear  inductor  reduces  to  the  previous  one  [2]. 

APPLICATION  TO  THE  SINGLE  PHASE  PARALLEL  INVERTER 

As  a  practical  application of our  lumped  circuit  model 
for  the  nonlinear  inductor,  we  applied  our  nonlinear 
inductor  model  to  the  single  phase  parallel  inverter. 
Figure 3(a)  shows  the  schematic  diagram  of  single 
phase  paralell  inverter. Also, Fig.  3(b)  shows  the 
circuit  model  of  single  phase  parallel  inverter.  The 
system  of  circuit  equations  is  best  expressed  in 
matrix  notation  involving  the  voltage  vector  V,current 
vector I, conductance  matrix G, winding  matrix  N  and 
flux  vector 0, viz., 

I = G[V - N(d/dt)OI, 

where 

T 
V =  [ E ,   E ,   0 1 ,  

T I = [i , ib, icl , 

0 = [$dr @ I 91 r 
T 

r  +r +r d  a  as  rd 
G =  rd  d +r b +r bs 

0 0 

nd  na ras 
N =  n d -nb -rbs * 

O n 0  

in (9) - (13) are  shown ln  Flg. 3; and  the superscripts 
~ , - l  in (9)-(12)  denote the  transpose  and  inverse of 
matrix,  respectively.  The  resistances of  SCR  (Silicon 
Controlled  Rectifier)  are  denoted  by  ras,rbs  as  shown 
in  Fig. 3. 

related  to  the  flux  vector 0 by 

The  elements E,ia,ib,~c,@d,~,q,ra,rb,rc,rd,na,nb!nc,nd 

On  the  other  side,  the  current  vector  I  in ( 8 )  must  be 
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C 

Fig. 3. (a)  Schematic  diagram of single  phase  parallel 
inverter  and  (b)  its  circuit  model. 

NTI = M4, + H(d/dt) 4, , 

where 

l/Li 0 

M = , 0 l/Li 0 

0 0 -l,/c 

l/Ri 0 0 

H = . (16)  0 l/Ri 0 

0 0 -r -r as  bs 

The  inductance  Li  in (15) and  resistance  Ri  in  (16) 
are  shown  in  Fig.  2(b);  and  the inverthg capacitor  C 
in (15) is shown  in  Fig. 3. By  substituting (8) into 
(14) and  rearranging,  the  system  of  circuit  equations 
which  must  be  solved  for  the  flux  vector 0 is  given  by 

(17)  (d/dt) C' = [H + NTGN] -' [-MQ + N  GV] . T 

NUMERICAL  METHOD  OF  SOLUTION 

As  shown in ( 6 ) , ( 7 ) ,  the  inductance  Li  and  resistance 
Ri  in  (15),(16)  are  respectively  the  functions  of  flux 
6 and  the  time  derivative of flux d@/dt. Moreover, 
the  resistances  ras,rbs of SCR  in  (12),  (13), (16) are 
the  function  of  their  terminal  voltage  as  well  as  gate 
trigger  pulse  current.  The  forward  voltage - current 
characteristic  of  SCR  is  similar to those  of  the  diode 
when  the  gate  trigger  pulse  current i, takes a reason- 
able  value.  Thereby, it is  assumed  t6at  the  forward 
resistance of  SCR  may  be  approximately  calculated  by 
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Fig. 4. Flow  chart of the  SCR  FUNCTION. 
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a simple  hyperbola.  Also,  the  backward  resistance  of 
SCR is  assumed  to a quite  large  value.  Figure 4 shows 
the  flow  chart of the SCR FUNCTION.  Since  the  terminal 
voltage of SCR  depends  on  the  the  time  derivative of 
the  flux  vector  (d/dt)@,  (17)  may  be  represented  by 

(d/dt)Q = F[0,  (d/dt)Q, i 1 .  (18) 
9 

(18)  means  that  the  circuit  model  of  single  phase 
parallel  inverter  gives a system  of  nonlinear  differ- 
ential  equations  whose  coefficients  are  the  functions 
of  the  flux  vector 0, time  derivative  of  flux  vector 
(d/dt)Q  and  gate  trigger  pulse  current  ig. 

differential  equations  is  replaced  by  the  following 
divided  differences: 

For  numerically  solving  (18),  this  system  of  nonlinear 

1 1 
(xt)  (QtcAt-Qt) = F [(y) (QtcAt+Qtt) I (xt) (Qt+At-f't)  ,i 1 , 

(29)  
4 

1 

where  At  denotes  the  stepwidth  in  time  t;  subscripts 
t+At,t  refer  to  the  time  t+At  and t, respectively. 
With  the  superscripts ( K f l )  , (K)  , (K-1)  denotin.9  the 
number  of  iterations,  (19)  is  iteratively  solved  by 

NUMERICAL  SOLUTIONS 

Various  constants  used  in  the  calculations  of  the 
single  phase  parallel  inverter  shown  in  Fig. 3 are 
listed  in  Table 1. 

Table 1. VARIOUS  CONSTANTS  USED  IN THE CALCULATIONS. 

Number  of  turns  of  DC  coil 
Number of turns  of  primary  coil  (a) n nd 

Number  of  turns  of  primary  coil  (b)  na 
Number  of  turns  of  secondary  coil n b 

Electric  resistance  of DC coil 
Electric  resistance of coil (a) rd 

Electric  resistance  of  coil (b) a 

Electric  resistance  of  secondary r rb 

Forward  voltage  drop  of  SCR 
Holding  current  of  SCR 
DC impressed  voltage  EH 

;; 

600 [turns] 
300  [turns] 
300  [turns] 
300 [turns] 
3.151  [Ql 
1.356  [QI 
1.323 [ i l l  
101.84 [a1 
1.6  [VI 
0.06 [A] 
20 [VI 

The  magnetization  curves  used  in  the  calculations  are 
shown in Fig. 1, and  represented  by  linear  interpo- 
lation  in  the  calculations.  The  stepwidth At  in  (20) 
was  determined  as  At<0.25(msec)  when  the  convergence 
and  accuracy of the  solutions  were  taken  into  account. 
Figure 5 shows  the  transient  transformer  flux $ and 
the  charge q on  the  inverting  capacitor C under  the 
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Fig.  5.  Transient  flux  and  charge  under  the  normal 
operation. 

E EXPERIMENTED E COMPUTED 

HORIZONTAL  CURRENT i 0.32  [A/Divl 
VERTICAL  FLUX 4d 27.5  [uWb/Divl 

Fig.  6.  Dynamic  hysteresis  loops  under  the  normal 
operation. 

I EXPERIMENTED - COMPUTED 

L 
HORIZONTAL  TIME 5 [msec/Divl CAPACITOR  C=60  [pFl - FLUX 4 66.7 [uWb/Divl STEPWIDTH  At=O. 1 [msec] --- CHARGE a 1200 [uC/Divl FREQUENCY f=49 [Hz1 

Fig.  7.  Transient  flux  and  charge  under  the  abnormal 
operation. 

normal  operation.  Also,  Fig. 6 shows  the  dynamic  hy- 
steresis  loops  between  the  direct  current  id  and  the 
reactor  flux  4d  under  the  same  conditions  of  Fig.  5. 

$ and  the  charge q on the  inverting  capacitor C under 
the  abnormal  operation. 
By  considering  the  results of Figs.  5-7,  it  is  re- 
vealed  that  the  circuit  model  of  single  phase  paralell 
inverter  in  cooperation  with  our  nonlinear  inductor 
model  behaves  just look like a practical  one  including 
the  abnormal  operation. 

Moreover,  Fig. I shows  the  transient  transformer  flux 

CONCLUSION 

As  shown  above,  we  have  derived  one  of  the  determing 
nonlhear inductor  model  and  demonstrated  its  applica- 
bility  to  the  single  phase  parallel  inverter  circuit. 
Particularly,  our  approach  has  enabled  to  simulate 
the  SCR  circuits  without  considering  the  switching 
problem  of  SCR. 

about 5 minutes  on  the  computer  ACOS-G/SYSTEM  700  at 
the  Computer  Center  of  Hosei.  University. 

The  time  required  to  obtain  the  results  of  Fig. 5 was 
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