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MODELLING OF HYSTEETIC AND  ANISOTROPIC  MAGNETIC  FIELD  PROBLEMS 

Y. Saito, H.  Saotome, S. Hayano  and T. Yamamura 

Abstract - Previously,  a  modelling  of  magnetodynamic 
fields  taking  into  account  dynamic  hysteresis  loops  was 
proposed  for  predicting  three-dimensional  magnetody- 
namic  fields  in  electromagnetic  devices.  This  method 
is now  generalized  to  take  into  account  the  anisotropic 
property  due  to  the  lamination  of  iron  sheets,  and 
improved  with  respect  to  the  time  discretization  method. 

This  improved  modelling of hysteretic  and  aniso- 
tropic  magnetic  fields  is  applied  to  a  simple  toroidal 
transformer,  whose  various  characteristics  are  calcu- 
lated  and  compared  with  experimental  measurements. 

INTRODUCTION 

A  recent  paper  had  proposed  a  modelling of magnetody- 
namic  fields  taking  into  account  dynamic  hysteresis 
loops  for  predicting  three-dimensional  magnetodynamic 
fields in electromagnetic  devices 1 1 1 .  Also,  the 
success of the  Saito  equation  in  the  modelling of hys- 
teretic  magnetodynamic  fields  spured  Saito,  Saotome  and 
Yamamura  to  construct  the  lumped  circuit  model  for 
nonlinear  inductor  exhibiting  dynamic  hysteresis  loops 
[21 .  In  this  paper,  the  Saito  equation  in  the  modeling 
of  hysteretic  magnetodynamic  fields is generalized  to 
take  into  account  the  anisotropic  property  due to the 
lamination of iron  sheets, and  improved  with  respect  to 
the  time  discretization  method.  The  anisotropic 
property  due  to  the  lamination of iron  sheets is intro- 
duced  in  terms of the  space  factor of iron,and  the  time 
discretization  method is improved  in  cooperation  with 
the  magnetic  circuit  connection.  Thus,  this  improved 
modelling of hysteretic  and  anisotropic  fields  is  now 
applied  to  a  simple  toroidal  transformer,  whose  various 
characteristics  are  calculated  and  compared  with  exper- 
imental  measurements. 

THEORY  OF  MAGNETIC  CIRCUITS 

The  Saito  equation  in  the  modelling of hysteretic  mag- 
netodynamic  fields is given  by 

1 1 dB 
s dt H = (-1 B + (-)-, 

where  H,B,u  and s are  the  magnetic  field  intesisity, 
flux  density,  permeability  and  hysteresis  coefficient, 
respectively.  For  further  details  of (l), you may 
refer  to 111.  

Two-Dimensional  Hysteretic  Magnetic  Fields 

By  considering (1) and  the  region  bounded  by  the 
contour abcda in Fig.  l(a), it is  possible  to  write  the 
following  relation: 

where  dl  denotes  the  infinitesimally  small  distance 
along  with  the  contour Z5Z.Z. The  left-hand  term  in 
(2) is  related  to  the  current  density J1 as 

abcda A- 
lHdl = IJlnda = il, 

abcda 

where  da  is  the  infinitesimally  small  area, A m  is 
the  surface  area  bounded  by  the  contour  abcda  and  n  is 
the  unit  normal  vector on the  infinitesimally  small 
area  da.  In ( 3 ) ,  it is assumed  that  the  current  i  is 1 
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not  uniformly  distributed on the  surface A=, but 
concentrated on the  conductor  with  infiniteslmally 
small  cross-sectional  area  located at the  mesh  point  of 
surface A m .  Similarly,  it is assumed  that  the 
currents in the  other  regions  in  Fig.  l(a)  are  concen- 
trated on the  conductors  with  infinitesimally  small 
cross-sectional  area  located  at  each of their  mesh 
points.  Due  to  the  nonlinear  magnetization  character- 
istic of iron,  it  is  assumed  that  both  the  permeability 

dependent.  Furthermore,  it is assumed  that  the  region 
which  encloses  each  of  the  mesh  points  in  Fig. l ( a )  may 
have  a  constant  permeability  and  hysteresiscoefficient. 

The  magnetic  field  intensity H and  flux  density B 
may  take  different  values  with  respect  to  position,  but 
it is  possible  to  assume  that  the  magnetic  flux  which 
takes  a  path  between  the  mesh  points  may  take  a 
constant  value.  With  these  assumptions,  the  magnetic 
fields  in  Fig.  l(a)  may  be  calculated  for  a  modified 
form  in  the  regions  as  shown  in  Fig.  l(b)  without  any 
appreciable  error.  Thereby,  the  current  il in ( 3 )  can 
be expressed in terms  of  the  flux ol, impressed  voltage 
el  and  electric  resistance  rl.  Also,  the  right-hand 
term  in (2) can be  expressed  by  the  magnetic  resistance 
Rlk  and  hysteresis  coefficient  Slk.  Accordingly, ( 2 )  
may  be  rewritten  by 

and  hysteresis  coefficient s in ( 2 )  are  position 

5 

(4) means  that  the  magnetic  circuits of the  regions  in 
Fig.  l(b)  are  formally  drawn  as  Fig.  l(c).  The  magnetic 
resistance  calculations  with  various  geometrical 
shapes  are  described  in [31.  By  considering  the  right- 
hand  terms  in (2) and (41, it is  found  that  the  param- 
eter  which  depends on the  geometrical  shape  is  common 
to  both  Rlk  and  Slk.  Therefore,  the  hysteresis  param- 
eters  for  various  geometrical  shapes  are  calculated  in 
much  the  same  way  as  the  magnetic  resistance. Also ,  the 
electric  resistance rl in (4) is  calculated  in  much  the 
same  way  as  the  magnetic  resistance,  because  the  defi- 
nition of electric  resistance  with  respect  to  the  geo- 

'c: 3 

(a)  GENERAL  2-D  MAGNETIC  (b)  MODIFIED  2-D  MAGNETIC 
FIELDS.  FIELDS. 

(c)  LUMPED  PARAMETER  (d)  DETAILS  OF  MAGNETIC 
REPRESENTATION.  CIRCUITS. 

Fig. 1. Two-dimensional  hysteretic  magnetic  fields. 
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The  other  magnetic  circuit  equations  between  the  nodes 
in  Fig.  l(d) can be  obtained  in  much  the  same  way as 
( 8 ) ,  and  combining  these  magnetic  circuit  equations, 
the  right-hand  term in (4) is represented  in  time  dis- 
cretized  form as 

where 

2 12 

n 

metrical  shape  is  similar  to  the  definition  of  magnetic 
resistance  [41. 

Boundary  Conditions 

At  the  interfaces  of  different  materials,  the  tangen- 
tial  component  of  magnetic  field  intensity  as  well  as 
the  normal  component  of  flux  density  must  be  continuous. 

l(b)  may  be  drawn  as  Fig.  l(d),  then  it  is  obvious  that 
the  boundary  condition  related  to  the  tangential  compo- 
nent  of  magnetic  field  intensity is always  satisfied. 
The  other  boundary  condition  related  to  the  normal  com- 
ponent  of  flux  density is taken  into  account  in  the 
calculations  of  magnetic  resistance  and  hysteresis 
parameter  [31. 

Discretization  in  Time  Dependent Terms 

When  we  assume  that  the  magnetic  circuits  of  Fig. 

The  magnetic  circuit  equation  between  nodes  a  and b in 
Fig.  l(d)  is 

fFiE A A  A = R $ +S (dgA/dt) = RB$B+SB(d$B/dt), (5) 

where  =,denotes  the  magnetomotive  force  between  nodes 
a and b in  Fig.  l(d);  the  magnetic  resistances RA,RB, 
hysteresis  parameters SA‘SB and  fluxes $A,$B are  shown 
in  Fig.  l(d).  By  means of  a  finite  difference  approach, 
(5)  is  discretized  in  time  by 

f-Jt+aAt) = zi(t+aAt) $ A (t+At)-z”(t+aAt) $ (t) A  A 

= z~(t+aAt)$B(t+At)-z~(t+aAt)~B(t), ( 6 )  

motive  force  f;;f;-(t+aAt),  and  magnetic  resistarices 
where  At  denotes  the  stepwidth in time t; the  magneto- 

zP(t+aAt)  ,zn(t+aAt)  ,zg(t+aAt)  ,zi(t+aAt)  are A  A 

f-(t+aAt) = af-(t+At)+(l-a)f-(t), ab ab ab 

zE(t+aAt) = (l/At)  [SA(t+aAt)+aAtR  (t+aAt)  I, 

zi(t+aAt) = (l/At)  [SA(t+aAt)-(l-a)AtR  (t+aAt) I, 

zE(t+aAt) = (l/At)  [SB(t+aAt)+aAtRB(t+aAt)  1, 

zn(t+aAt) = (l/At)  [sB(t+aAt)  -(l-a)AtRB(t+aAt)], 

R (t+aAt) = C%R (t+At) + (1-a) R (t) , 

(7)  

A 

A 

B 

A  A  A 

s(t+aAt) = aRB(t+At)+(l-a)R B (t), 

SA(t+aAt)  aSA(t+At)+(l-a)S A (t), 

S (t+aAt) = c ~ S  (t+At)+(l-a)S,(t), B B 

The  parameter  in ( 6 ) ,  (7 )  may  be  chosen  arbitrary 
e.9. a=O,cC=l yield  forward  and  backward  differences, 
respectively.  In ( 6 ) ,  it  is  assumed  that  the  terms 
zx(t+aAt)  $A(t+At)  and  zi(t+aAt) @ (t)  correspond  to 

zE(t+aAt) $,(t+At)  and  zg”(t+aAt)  @B(t),  respectively. 
Thereby, (6) can  be  expressed  in  terms of the  loop 
fluxes  $l(t+At) ,$ (t)  ,$,(t+At)  ,$2(t)  in  Fig.  l(c)  as 

A 

1 

f-(t+aAt) = zy2 (t+aAt) [$1 (t+At)  -$2  (t+At) I ab 

- z;2 (t+aAt) [$1 (t) -$2 (t) 1 , ( 8 )  

zP(t+aAt)zP(t+aAt) 

zp (t+aAt)  +zp  (t+aAt) ‘ 
(t+aAt) = A B 

A B 

zi(t+aAt)  zi(t+aAt) 

zn (t+aAt)  +zn  (t+aAt) 
(t+aAt) = 

A B 

where  zyk(t+aAt)  ,zyk(t+aAt)  (k=3,4,5)  are  the  magnetic 
impedances  between  the  nodes b,c,dla in  Fig. l(d).“ 
By  means of  a  finite  difference  method,  the  left-hand 
term  in (4) is  replaced  by  the  following  equation: 

(l/rl)  [el-(d/dt)$ll = (l/rl)  [ael(t+At)+(l-a)el(t) 

- (l/At)  ($l(t+At)-$l(t) 11. (11) 

Substituting (lo), (11) into ( 4 )  and  rearranging,  the 
.magnetic  circuit  equation  discretized  in  time is  given 
by 

5 
f  (t+aAt) + [- 1 rlAt t k=2 C zlk(t+aAt1l$,(t~ 

5 n  1 5 
- zlk(t+aAt) $ (t) = [- + 
k=2 k rlAt k=2 

5 
zp (t+aAt) ] $l(t+At) - C zyk(t+aAt)  $k(t+At) , (12) 
lk k=2 

where  the  externally  impressed  magnetomotive  force 
f  (t+aAt)  is 1 

fl(t+aAt) = (l/rl)  [ael(t+At)+(l-a)e  (t)].. (131 1 

Anisotropic  Magnetization 

In  order  to  suppress  the  eddy  currents  flowing  through 
the  iron  core,  electromagnetic  devices  are  always  con- 
structed  by  the  lamination  using  insulated  iron  sheets. 
This  makes  the  magnetization  characteristic  of  the  iron 
core  anisotropic in direction. For an  example,consider 
the  magnetization  characteristic of the  iron  core  shown 
in  Fig. 2. It is  obvious  that  the  permeability  and 
hysteresis  coefficient  of  this  iron  core  may  take  dif- 
ferent  values  with  respect  to  direction.  Generally,the 
space  occupied  by  the  insulation  materials  in  the  iron 
core  is  very  small,  and  may  be  regarded  as  air  gap. 
Moreover  the  permeability of air  has  a  very  small  value 
compared  with that  of  iron, and  the  hysteresis  coeffi- 
cient of air  takes  an  infinitely  large  value.  Therefore, 
it  is  a  rational  assumption  that  all  of  the f l u x  in  the 
direction of x-axis  in  Fig.  2  will  flow  through  the 
path  containing  iron.  This  means  that  the  permeability 
px and  hysteresis  coefficient s in Fig. 2 are  given by 

l::l=l: : I x / ” / .  (14) 

F-.. . -~ ~ . -  .. ~ ______ 

- ~~~~~ 

Fig. 2. An example of laminated  core. 
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where  y is the  space  factor  of  iron  viz.,  y=[VOLUME  OF 
IRON]/[TOTAL  VOLUME  OF  IRON  CORE].  On  the  contrary,all 
of the  flux  in  the  direction  of  y-axis  must  flow 
through  the  path  containing  iron  as  well  as  air.  There- 
fore,  the  permeability u y  and  hysteresis  coefficient s 
in  Fig. 2 are  given  by Y 

where u0 is  the  permeability of air.  The  relationships 
of (14),(15) have  been  derived  for  a  simple  rectangular 
prism  element.  Nevertheless,  the  results  of (14),(15) 
are  valid  for  the  other  shapes of element. 

Three-Dimensional  Hysteretic  Magnetic  Fields 

Most  electromagnetic  devices  consist  of  conducting 
wires  around  an  iron  core:  in  order  to  minimize  the 
magnetic  field  energy  stored  in  the  iron  core,  the  eddy 
currents  in  the  iron  core  flow  in  a  direction  opposite 
to  the  exciting  current.  The  magnetic  flux  which 
passes  through  the  path  parallel  to  the  current  car- 
rying  coil  can  be  neglected,  therefore,  it  is  prefera- 
ble  to  consider  the  solid  element  as  shown  in  Fig. 3(a). 

This  three-dimensional  element  can  be  represented  by 
the-two-dimensional  coordinate,  which  consists of the 
radial  and  tangential  directions.  For  simplicity,  it 
is  preferable  to  consider  an  example.  One  of  the  sim- 
plest  example of electromagnetic  devices  is  the 
toroidal  transformer  as  shown in Fig.  3(b). This  is 
divided  into MR parts  in  the  radial  direction  and MT 
parts  in  the  tangential  direction,  taking  into  account 
the  region  containing  air.  Thereby,  the  magnetic  field 
calculation of the  toroidal  transformer is reduced  to 
evaluating  the M (=MRxMT)  loop  fluxes.  Moreover,  it is 
assumed  that  each  of  the  coils  covers  a  distinct  solid 
element  which  is  similar  in  shape  to  the  solid  element 
shown  in  Fig.  3(a).  The  system of magnetic  circuit 
equations  is  best  expressed  in  matrix  notation  in- 
volving  the  externally  impressed  magnetomotive  force 
vector  F  [t+aAtl , initial  flux  vector  @[tl,  flux  vector 
O[t+Atl,  electric  conductance  matrix G, initial  mag- 
netic  impedance  matrix  Zn[t+aAtl  and  magnetic  im- 
pedance  matrix  ZP[t+uAtl,  that  is 

h + y c  
.g4 

RADIAL TANGENTIAL  EDDY  CURRENT 
DIRECTION DIRECTION  PATH 

(a)  SOLID  ELEMENT. 

TANGENTIAL 

CTION 

DIRECTION 
DIRECTION 

(b)  TOROIDAL  TRANSFORMER AND  ITS  MAGNETIC  CIRCUITS. 
~ ... ~ . ~ 

~ ~ 

Fig. 3. Solid  element  and  toroidal  transformer. 

F [ ~ + C I A ~ ]  +{G+Zn [~ + C I A ~ ]  }a [tl={G+Zp [ ~ + C I A ~ ]  I@ [t+Atl . (I6) 

m e n  we  compared  the  magnetic  circuits  in  Fiq.  3(b) 
with (161, then  it  is  found  that  the  loop  flux $ J ~ + ~  [ 
shown  in  dotted  line  in  Fig. 3(b)l must  be  taken  into 
account  in  the  calculation  of  fluxes  to  satisfy  the 
condition of minimum  number of network  equations.  Since 
the  loop  flux $M+l in Fig.  3(b) is  physically  flowing 
in a  tangential  direction  at  the  center  of  figure,  we 
can  find  the  following  relationships: 

@It1 = C  ac[t1,  @[t+Atl = C  Qc[t+At1, T  T (17) 

where  subscript  c  refers  to  the  three-dimensional 
quantities,  superscript T denotes  the  transpose  of 
matrix,  and  CT  is  the  flux  connection  matrix  which 
is a  rectangular  matrix  with  M  rows  and  M+1  columns: 

1 0  0 . - 1  

CT= 

0 0 0 . - 1  

0 1 0 .-1 
(18) . . . . .  

Since  the  magnetomotive  force  due  to  the  initial  flux 
vector O[tl may  be  considered  as  one  of  the  input 
vectors,  the  system of three-dimensional  magnetic 
circuit  equations  is  given  by 

Fc [t+crAtI  +{Gc+ZZ  [t+aAt]  [t] 

= {Gc+Z: [t+aAtl }ac [t+At] , 
where 

F  [t+aAtl=CF[t+aAt],  G  =CGC , 

Z z  [t+nAl=CZnlt+aAtl  C , 2: [t+aAt] =czP [t+aAt] cT. 

T 
C 

T 

COMPARISON  WITH  EXPERIMENT 

The  flux  vector Oc[t+Atl in (19) is  calculated  by 
iteration,  using  a  relaxation  parameter [3]. Fig. 4 
shows  the  magnetization  curves of iron.  Various 
constants  used  in  the  calcul.ations of the  toroidal 
transformer  are  listed  in  Table 1. Because  of  the  sim- 
plicity of the  calculations  and  usefulness  for  ex- 
amining  the  eddy  currents  (namely  load  current  mav  be 
considered  as  one of the  eddy  currents),  we  selected 
the  pure  resistive  loads.  The  parameters u and  At  in 
(19) were  respectively  determined  as u=O.5 and  At=0.25 
(msec)  by  the  numerical  tests  when  the  convergence  and 
accuracy  of  the  solgtions  were  taken  into  account.  The 
toroidal  transformer  in  Fig. 3(b) has  four  secondary 

9.c 

4 .5  

C 

90 

PERMEABILITY 45 

l J = g  

0 3.5 7 . 0  

if x10 [AT/ml 3 

HYSTERESIS  COEFFICIENT 

1 0.75 1.50 

H x10 [AT/m] 3 
1 

Fig. 4. Magnetization  curves  used  in  the  calculations. 
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coils  A,B,C,D.  In  order  to  show  the  effect of leakage Figure  5(a)  shows  the  steady  state  primary  and 
fluxes  from  the  iron  core,  each of the  secondary  coils secondary  currents  when  the  coil A is  used  as  a 
was  used  as  a  secondary  coil  while  the  other  secondary secondary  coil.  Also,  Fig. 5(b) shows  the  steady 
coils  were  opened. state  primary  and  secondary  currents  when  the  coil  C 

is  used  as  a  secondary  coil.  Figure 6 shows  the  root 
Table 1. VARIOUS  CONSTANTS  USED  IN  THE  CALCULATIONS.  mean  square  values of secondary  current. 

Number of subdivisions  in  radial  direction 6 
Number of subdivisions  in  tangential  direction 8 
Limit of discrepancy 0.1 [percent] 
Inner  radius  of  iron  core 0.04 p l  
Outer  radius  of  iron  core 0.05 [ml 
Thickness of iron  core 0.011 [ml 
Thickness of primary  coil  0.002  [ml 
Thickness of secondary  coil  0.002 [ml 
Number of turns  of  primary  coil  400  [turns I 
Number  of  turns  of.secondary  coil  200  [turns] 
Space  factor of iron 90 [percent] 
Electric  resistance of primary  coil  5.51  [QI 

Load  resistance 
Steady  state 102.3  [QI 
[Transient  State 3.3  [QI 

All  the  initial  fluxes  are  Set  to  zero. 

IAl PRIMARY  CURRENT  [A]  SECONDARY  CURRENT 

(a)  COIL A. - EXPERIMENTED - - - - - COMPUTED 

[A]  PRIMARY  CURRENT  [A]  SECONDARY  CURRENT 

Fig. 5. Steady  state  primary  and  secondary  currents 
when  the  impressed  voltage  is el=fi-20-SIN( 
100Trt). 

~~ ~ 

A B C D 
COIL  POSITION 

~~~~~ 

Pig. 6. Steady  state  secondary  current  difference 

in is el=  2  20-SIN(lOOTrt)  and  the  currents  are 
expressed  in  root  mean  square  value. 

ositions  when  the  impressed  voltage 

6 T PRIMARY  CURRENT [AI 3 SECONDARY  CURRENT 

(a)  COIL B - EXPERIMENTED - - - - - COMPUTED 
[AI  [AI 
T PRIMARY  CURRENT T SECONDARY  CURRENT 

0 

Y = 82.8  [deg.] - 3  Y = 82.8  [deg.. 

(b) COIL D. 1- 20 [msecl 

Fig. 7. Transient  state  primary  and  secondary 

e =Jz-20. SIN (1001rt+Y) . currents  when  the  impressed  voltage is 

1 

Figure  7(a)  shows  the  transient  state  primary  and 
secondary  currents  when  the  coil B is used  as  a  second- 
ary  coil.  Moreover,  Fig.  7(b)  shows  the  transient 
state  primary  and  secondary  currents  when  the  coil  D  is 
used  as  a  secondary  coil. 

CONCLUSION 

AS  shown  in  Figs.  5-7,  our  model  has  behaved  iust 
like  a  practical  toroidal  transformer  and  given  the 
3-D  solutions  as  accurate  as  1-D  solutions  1,2 . Con- 
sequently, it has  been  shown  that  the  possibility of 
computerized  design  for  transformers  becomes  much 
greater. 
The  time  reqiured  to  obtain  the  results of Fig.  7(a) 

was  a  few  minutes on the  computer  ACOS-G/SYSTEM-700  at 
the  Computer  Center  of  Hosei  University. 
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