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Spatial particle density distribution images in a pipe cross section have been eval-
wated by means of siate rransition marrix, which is a paraweter indicating the
dominaut particle density transition patierns among time series iniages consisting of
CT 2-D space and 1-D time. State transition characterizes the transition patterns
Jfor positions in a cross section as manotonous transitions, sudden transitions, and
extreme value rransitions. In a simulation, the real part of the state transition matrix
is negative and the imaginary part is zero in the case of monotonous transition. The
real part is positive and ithe imaginary part is zero in the case of extrenie value
wransition. The imaginary part is nonzero in the case of sudden transition. In free-fall
particles in a vertical pipe, high, sudden, and extreme value transitions do not occur
because the particle flow rate at this position is low, and therefore the probability of
collision among particles is also low. High, sudden, and extreme value transitions
occur near the pipe center when the particle flow rate is high, because the probability
of collision among particles is high.

Keywords: state transition matrix, capacitance CT, free-fall particles, image
processing

Introduction

Movements of particles, powders, and granules have been scrutinized in an effort to
attain high performance operation in chemical engineering facilities such as air
transportation equipment and circulating fluidized beds. For example, particle
density distribution in particle-laden turbulent channel flow was measured by the
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laser sheet method (Fessler et al., 1994), and the distribution in channel flow was
calculated by large eddy simulation (Wang & Squires, 1996). Moreover, total particle
density at a pipe center line of free-fall particles in a vertical standpipe was measured
by a laser method (Peng & Herrmann, 1995). These studies reveal that non-
uniformity of particle density occurs in the flow direction when the particle flow rate
is high. However, these studies have been conducted with respect to the pipe axial
direction rather than the pipe cross section. Meanwhile, a cluster formation of
particles in a circulating fluidized bed, which is an extreme case of nonuniformity,
has been visualized with respect to both the pipe axial direction and the pipe cross
section by the laser sheet method (Horio & Kuroki, 1994). However, cluster for-
mation in the cross section was visualized from an inclined viewpoint and was not
estimated quantitatively.

Against this background, the process tomography method has been developed in
order to visualize particle behavior in multiphase flow in pipe cross section non-
invasively and quantitatively (Huang et al., 1989). This capacitance tdmography CT,
method was applied to gas-solid flow in a pipeline in order to visualize the particle
density distribution in the pipe cross section in time series (Dyakowski et al., 1999).
Takei et al. (2002) have decomposed the CT images with an image processing
technique of wavelet multi-resolution to point out nonuniform distribution of the
particle density not only in the flow direction but also in the cross section. However,
combination of CT and image processing raises a new issue: how to evaluate non-
uniformity of the time transitional particles from the time discretized CT images by
means of a mathematical method.

In other fields related to fluid engineering, the state transition matrix method is
quite often used as a method to evaluate a time transitional relationship between
time responses. For instance, the state transition matrix method is introduced in
order to evaluate the vibration response between coolant flow and a fluid structure of
a nuclear reactor (Kuzelka, 1982). This method is used also to calculate the
deposition process of sputtered neutral particles in a chemical reaction chamber
(Parker et al., 1995). Generally, the state transition matrix has been used in such
one-dimensional time transitional relationships, but it has not been applied to three-
dimensional image fields consisting of two-dimensional space (x and y) by one-
dimensional time.

In the present study, the state transition matrix is defined in order to evaluate
simple imitated particle density images among discretized CT images and to discuss
characteristics. Moreover, the state transition matrix method is applied to CT images
of free-fall particles in a vertical pipe for evaluating the time transitional particle
density distribution.

Theory of State Transition Matrix to CT Images

A standard cross section in Figure 1 depicts free-fall particle movement in a co-
ordinate system of a pipe. The particle density changes at a position between a
standard cross section at time ¢ and a cross section at ¢ + At by two factors space
interactions and time transition. The governing Equation is assumed to be a
Helmholtz-type differential Equation, which expresses particle movement in the
cross section for a given time
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Figure 1. Coordinate system in a pipe and particle density factors.

where U is the particle density distribution with 2-D space x and y, and time 7 in the
cross section, o and B are coefficients with dimension [t/m’] and [t*/ mz], respectively.
For o = 0, Equation (1) is called a wave equation, and for § = 0, Equation (1) is
called a diffusion equation. This study assumes that the particle diffusion is domi-
nant rather than the particle wave in free-fall particles in a pipe, which expresses
f = 0. In Equation (1), p is source density, which is dependent on the space and time.
The first term in Equation (1) indicates spatial dispersion. and the second term
indicates time transition of particle density.

After V-U is discretized by a discretization method, Equation (1) is rewritten as:

d
CU'+T;IT)‘U' =K (2)

U, is a 1 x n* vector when both image space resolution in x and y directions are n. C
is a discretization coefficient of an 12 x n? matrix, which is composed of coefficients

Qof U. In the case of nine-point finite difference method and zero Dirichlet boundary
condition, the relationship between continuous and discrete systems is:

*U ij & Ui.i 1
Sy Joo 2
Ox? dy-  6Ah

Uicijor + Uisi iy +8Uy 4 Uiy i

+ Uiy, jo1 +4U; sy +4U; ;- — 20U, ]
where 7 and j are the x and y position in the cross section. In Equation (2), y and K
are: ‘

v = Aha, K= —Al’p

where A/ is a distance between the discrete grids. K is dependent on p, which is
source density 1 x n’vector. Based on Equation (2), the continuous particle density
U in Equation (1) becomes the discrete particle density U,, which is dependent on
time only. Multiplying Equation (2) by y~! yields
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d
U, =AU, +F 3)

where A = y~'C and F = 7' K. In Equation (3), A is the state transition value matrix
governing the particle density transition, which is an n? x »n* matrix, and Fisa 1 x n?
input vector.

Because Equation (3) cannot be resolved directly, mode coordinates are con-
sidered. The mode matrix consisting of the eigenvector of A is replaced by Z, and U,
is rewritten using linear coupling between the element of Z and the element of vector
Y:

U=1Y (4)

where Z = [27,25-23,- - -, Tuxal, 27 15 @ transpose vector of the first eigen vector of A.
After Equation (4) is substituted into Equation (3), it is rewritten as:

d
—Y=-AY+Z'F 5
df P ( )
where Z~' = ZT because Z is an orthonormal matrix, and Ay = ZTAZ. A, is the
transition matrix of the real physical system indicating particle density transition,
which is a square matrix with diagonal elements of the eigenvalues of A. The solution
vector of the modal Equation (3) is:

Y,=A'ZTF + ™' (Yy — A 'ZF) (6)

where Y, is the initial vector. When the vector from the input vector F is replaced
with Y, Equation (6) is rewritten as:

Y, =Y+ e (Y- ¥) (7)
Because Ze~ %' = ¢~ Z, when Z multiplies Equation (7) from the left side,
U, = U+ e U, - Uj (8)

is obtained. Equation (8) means the density distribution U, at an arbitrary time ¢ is
expressed by the first particle density distribution U, and the final particle density
distribution Uy.

In Equation (8), in the case of + = 0, the intermediate density distribution U, is
equal to the initial density distribution U, in the case of 1 — oo, the intermediate
density distribution U, is equal to the final density distribution U;. When
Equation (8) is applied among three discretized CT images, the following relation
holds:

Uy = Uy + MU - Uy 9)

where i is the frame number of CT images and At is the time resolution of CT images.
The state transition matrix in the image system A indicates the transition quantities
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| | Figure 2. CT image and state transition matrix A. (a) CT image 1 frames; (b) state transition
" matrix A m—2 frames.

i

, among three images. On the basis of Equation (9), the state transition matrix A is
rewritten as:

U,
__° i+ i+2
-] ®

where A is an »° x #* diagonal matrix of eigenvalues /; however, the element posi-
tion is replaced with column and row order to easily visualize the transition as an

image:
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Figure 2 shows the relationship between the time series of CT images and A. On the
hasis of Equation (10), A of (m — 2) frames are obtained as shown in Figure 2(b)
when the discretized images have m frames as shown in Figure 2(a). When A is
calculated, the particle movement characteristic among three images is extracted as
linear or nonlinear.

Simulation

The fundamental characteristics of A should be confirmed by use of an imitational
one-pixel image. As shown in Table |, the density transition among three images
{ from U;, U;,,, and U, ., and has nine simple patterns. Moreover, except for the
constant pattern in Table 1, the transition patterns are classified into three patterns
as shown in Figure 3. These are: a monotonous transition, a sudden transition, and
an extreme value transition. In particular, pattern numbers (2) through (7) in Table 1
are classified into two patterns: the sudden transition shown in Figure 3 (b), and the
extreme value transition shown in Figure 3(c). A sudden transition state is said to
occur when the intensity of the final image U,,, is located between the first image U,
and the intermediate image Uy, ;. Similarly, an extreme value transition occurs when
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Table 1

Time Transition among Three Images
No. Image  Transition direction Image  Transition direction  Image
0y U; Up* Uity 8) 4 Ui
(2 UP DOWN?
3) UP CONSTANT®
4 CONSTANT UP
(5) CONSTANT DOWN
6) CONSTANT CONSTANT
(N DOWN 18] ¢
8) DOWN DOWN
) DOWN CONSTANT

“Increase of transition quantity between images.
"Decrease of transition quantity between images.
“Constant transition quantity between images.

Intensity of image

(b)

Figure 3. Examples of density transition. (a) monotonous transition; (b) sudden transition;
(¢) extreme value wransition.

the intensity of the first image U, falls between the intermediate image U,,, and the
final image U, ,. The simple density transition functions, i.e., a monotonous func-
tion, a noncontinuous function, and a decrement function, are substituted into
Equation (10) for discussing the relationship between the transition pattern and A.

First, a monotonous function is considered. Particle density that shows mono-
tonous transition is assumed to follow

U =¢" (11)

at one-image pixel as shown in Figure 4. The horizontal axis represents time 7, and
the vertical axis represents image intensity U,, which is assumed to be the density
value. Substituting Equation (11) into Equation (10) leads to the state transition
matrix A shown in Figure 5. According to Figure 5, the real part of A has a con-
tinuous negative value and the imaginary part of A is zero.

Second, the noncontinuous function is considered. Particle density that shows
noncontinuous transition is assumed to follow

U, = o= (12)

at one-image pixel as shown in Figure 6. Substituting Equation (12) into Equation
(10) leads to the state transition matrix A shown in Figure 7. According to Figure 7,
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Figure 4. Imitated monotonous function at one-image pixel.
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Figure 5. State transition matrix A. (a) Real part of A; (b) imaginary part of A.
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Figure 7. State transition matrix A. (a) Real part of A; (b) imaginary part of A.
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the real part of A has a peak at the noncontinuous point, and the imaginary part is
Zero.

Third, the decremental function is considered in a similar manner. Particle
density, which shows decrement transition, is assumed to follow

U, = cos(Br)e™™ (13)

at one-image pixel as shown in Figure 8, where x and § are constants. Substituting
Equation (13) into Equation (10) leads to the state transition matrix A shown in
Figure 9. According to Figure 9, the real part and the imaginary part have peaks at
the extreme point.
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Figure 8. Imitated decrement function at one-image pixel.
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Figure 9. State transition matrix A. (a) Real part of A; (b) imaginary part of A.

Table 2
Relationship Between Density Transition Pattern and A
Density transition State transition matrix A
pattern
Real part Imaginary part
Positive Negative Positive Negative
Monotonous transition x? b 0 (zero)
Extreme value transition 0 X
Sudden transition 0 0 0 %

#Value does not exist.
YValue exists.
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On the basis of the above-mentioned simulation, the fundamental relationship
between the density transition pattern and A is clarified as shown in Table 2. When
the density pattern is monotonous transition, the real part of A is negative and the
imaginary part of A is zero. Similarly, when the density pattern is extreme value
transition, the real part of A is positive and the imaginary part of A is zero.
Moreover, when the density pattern is sudden transition the imaginary part of A is
nonzero. In other words, as shown in Table 2, the real part of A and the imaginary
part of A determine the nature of density transition.

Experiments

Priuciple of Capacitance CT

' Eree-fall particle density distribution images were obtained in a vertical pipe by a CT
nsor, depicted in Figures 10 (a) and (b) (Yang, 1996). Insulation materials separate
the 12 electrodes within the sensor. The relationship between capacitance and per-
| mittivity in the static-electro field is expressed by:

C,A,‘,:—%Oc }{ e(O)VV(r) - dr (14)

Sy

where i is the standard electrode number, which ranges from 1 to 11; j is the reference
electrode number, which ranges from i + 1 to 12; C; ; is the capacitance between the
standard electrode / and the reference electrode j; gy is the vacuum permittivity of air:
g(r) is the permittivity distribution on the cross section; r is a position vector on the
cross section; I, is the voltage supplied to the ith electrode; [; is the area affected by
the electric line of force; and V,(r) is the potential distribution on the cross section
between the ith and jth electrodes. Since V(r) is unknown in Equation (14), the
Laplace equation

V- [e(r)VV(r)] =0 (15)

‘is assumed in the cross section. F(r) is obtained from the discretized Equation (15).

Electrode Pipe inner wall

Pipe inner wall
Sensor ’ - y
N y =32
Particle X
Air ‘ N x =32
(@ (b) ©)

Figure 10. Overview of capacitance CT and its spatial resolution. (a) Frontal view; (b) cross-
sectional-view; (c) spatial resolution.
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The matrix expression in Equation (14) showing the relationship between the
capacitance vector C and the permittivity distributions vector E is

C=S.E (16)

where S, is the sensitivity map matrix. In other words, the capacitance CT can be
used to obtain the permittivity distribution of the particles E in the cross section
from both the known sensitivity map matrix S, and the measured capacitance matrix
C. In the case where the pipeline cross section has 12 electrodes and 32 x 32 =1024
pixels, as in the spatial resolution shown in Figure 10 (c), the sensitivity map S, is a
66 x 1024 matrix in Equation (16), the capacitance matrix C expresses a 66 x 1
matrix, and the permittivity distribution matrix E is a 1024 x |1 matrix. The math-
ematical method used to obtain the permittivity matrix E from both the capacitance
matrix C and the sensitivity map matrix S, is an ill-posed inverse problem, because
the inverse matrix S;! does not exist. In this study, the Newton-Raphson method
(Isaksen, 1996) is used to obtain the permittivity matrix E.

Experimental Equipment, Conditions, and Results

Figure 11 shows the experimental equipment, which is composed of a hopper for
supplying particles, a vertical pipe, the CT sensor, and a receiver. The pipe is 2m
long and has an inside diameter of 50 mm. Polyethylene pellets are dropped in free-
fall from the hopper at three flow rates, Q; =9.82 x 103 m?/s, Q, = 2.55x
10-*m?/s. and Q; = 6.04 x 10~*m>/s. Mean particle diameter is 3.26mm. The

Hopper

2m

Personal
computer

Figure 11. Experimental equipment.

(@)

®

(a) (b) (c)

Figure 12. Visualized time-mean CT images. (a) Qy: (2)0.07, (£)—-0.04; (b) Q5 («)0.21,
($)—0.08; (c) Q3 ()0.15, ($)—0.03.
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resulting images consist of 171 frames obtained at 100Hz interval; i.e., At is 10
milliseconds. Figures 12 (a), (b), and (c) show the time-mean images visualized by the
CT sensor at the three particle volume flow rates. The white region indicates high
density, and the black region indicates low density. The image values are normalized
in each image; the conditions differ in maximum and minimum values. According to
the time-mean images, the near center position has a high value, and the value
gradually decreases toward the pipe wall. Figure 13 shows the spatial mean value of
the particle density of each image. The density fluctuation DF is calculated by:

DF=2 2.2 VI~

where E, is a space-mean density value at time ¢ CT image. According to the figure,
the spatial mean value increases; moreover, the spatial mean value fluctuates to a
greater extent as the particle flow rate increases. Figures 14 (a) and (b) show the time-
mean values for each image on the one-pixel line of x axis and one-pixel line of y
axis. According this figure, the particle in the case of O, and Q, concentrate in the
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Figure 13. Spatial mean values for each image. (a) Time and space mean density =0.017{—],
density fluctuation=0.007[-]; (b) Time and space mean density=0.035{—], density
fluctuation=0.013[-]; () Time and space mean density=0.034[-], density
fluctuation =0.018[-]. : :
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(a) )

Figure 14. Time-mean values for each image. (a) One-pixel line of x axis; (b) one-pixel line of y
axis.
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pipe center; however, the particle distribution in the case of Q, is broader and the
particle disperse to the pipe wall.

Image Processing and Discussion

Image Processing Method

In order to clarify the density transition in the pipe cross section, a transition pattern
map among three discrete images at a given time was produced. The process to
produce the map is as follows: first, three images E in time order are substituted into
U in Equation (10) in order to obtain the transition matrix A. Second, on the basis of
the value pattern of A, the dominant density transition pattern; namely, monotonous
transition, sudden transition, or extreme value transition, is judged from Table 2.
Third, the transition pattern map in the pipe cross section is produced by binarizing
the density transition pattern; namely, when sudden transition is extracted, the pixel
of the sudden transition is replaced with 1.0, which is indicated by white, and the
pixel of the other transition or nontransition is replaced with 0.0. When extreme
value transition is extracted, the pixel of the extreme transition is replaced with 1.0,

.and the pixel of the other transition or nontransition is replaced with 0.0. Finally, the
‘process from the first step to the third step is repeated for all images in time sequence.

As a result, the positions where the kinds of transition patterns occur in the cross
section are qualitatively visualized.

Image Processing Results and Discussion

Figure 15 shows an example of the transition pattern map among 99A¢, 100A¢. and
101Ar for three values of particle flow rates. This figure is the trinarization map of
the transition patterns. Figure 16 is the time-mean binarizing transition pattern map
obtained from the total time. (*)-1 is the sudden transition, and (*)-2 is the extreme
value transition. The white region indicates high intensity of the transition, and the
black region indicates low intensity of the transition. According to Figure 16 (a)-1, in
the case of low particle flow rate Q,, the high sudden transition (white region)
slightly occurs near the pipe wall and the pipe center. As can be seen from
Figure 16(a)-2, the extreme value transition also slightly occurs near the pipe wall.
According to Figures 16(b)-1 and -2, in the case of intermediate particle flow rate Q,,
the intensity of the sudden transition (white region) relatively increases near the pipe
center; however, the intensity of sudden and extreme value transitions near the pipe
wall are nearly the same as the Q, case. Based on Figures 16(c)-1 and -2, in the case
of high particle flow rate Q5, the sudden transition and the extreme value transition

¢ ;
|

(@) O (b) 0 (©) O

Figure 15. Examples of transition pattern maps.

[] Extreme value transition

2% Sudden transition
Monotonous transition
or nontransition
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(@)

(ar1 (a)-2 (b)-1 (b)-2 ()1 ()2 ®

Figure 16. Time-mean transition pattern maps. ( )-1 Sudden transition; ( )-2 extreme value
transition. (a)Q,: (2)0.10, ()—0.22; (b)Q>: (2)0.14, ($#)—0.28; (c)Q3: (2)0.12, ($)—0.22.

strongly occur on the whole. According to Figure 12, the time-mean particle density
tends to be dense near the pipe center irrespective of the particle flow rate. However,
the transitional process of the particle density in the cross section is strongly
dependent on particle flow rate. In the case of Q| in Figure 13, the fluctuation of the
particle density is low: 0.007. The extreme value transition does not occur frequently
near the pipe center, because the collision frequency among particles is low near the
center. Also, according to Figure 14, because the particles tend not to be located near
the pipe wall, the intensity of the sudden and extreme value transitions is small. On
the other hand, in the case of Q5 in Figure 13, the fluctuation of the particle density is
high: 0.018. Moreover, the particles are dispersed in the whole cross section as shown
in Figure 14. The sudden transition and extreme value transition occur near the pipe
center and the pipe wall, because the particles move in various directions by collision
between particles and collision between particles and the pipe wall. In the case of
intermediate particle flow rate Q,, the pattern shows characteristics falling between
those of the low particle flow rate pattern and those of the high particle flow rate
pattern.

In (ree-falling particles in a pipeline, so-called inhomogeneous particle density is
reported. In the case of large particle size, such as that used in this study, the
dominant factor for inhomogeneous particle density becomes particle collision
rather than turbulence. Peng and Herrmann (1995) calculated the particle density in
a cross section of a standpipe by the lattice gas automation (LGA) method on the
condition that particles fall freely from the upper part of the pipe. According to the
paper, when particle density is low (in the case of particle injection rate), the power
spectrum density (P.S.D.) maintains the same value. This means the particle density
is homogeneous, because the probability of collision between particles is low.
However, the P.S.D. decreases with increasing time frequency when the particle
density is high (in the case of particle injection rate). This means that the particle
density becomes inhomogeneous because the particles collide with one another and
with the wall. The aforementioned discussion in this image processing results shows
qualitative agreement with the previously reported research results under similar
experimental conditions.

Conclusions

The state transition matrix A has been defined from the Helmholtz-type differential
Equation to apply to evaluation of the particle transitional process. As a preliminary
study, A is applied to the imitated particle density in a simple one-image pixel in
order to confirm the relationship between A values and transition patterns among
three images, namely, monotonous transition, sudden transition, and extreme value
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transition. Moreover, A is applied to free-fall particle density distribution images
visualized by a CT sensor in order to discuss the particle transition patterns. The
following results are obtained:

(1) In the case of monotonous transition, the real part of A is negative and the
imaginary part of A is zero. In the case of sudden transition, the real part of
A is nonzero and the imaginary part of A is positive. In the case of extreme
value transition, the real part of A is positive and the imaginary part of A is
zero.

(2) Sudden transition and extreme value transition does not occur frequently
when the particle flow rate is low, because the probability of collision among
particles is relatively low. On the other hand, the transitions occur near the
pipe center when the particle flow rate is high, because the probability of
collision among particles is high.
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