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Abstract
A new reconstruction method called generalized vector sampled pattern
matching (GVSPM) has been applied to an ill-posed inverse problem
involving electrical capacitance computed tomography for solid–air
two-phase flow. This new method is able to achieve stable convergence
without the use of an empirical value. This accurate reconstruction is
accomplished using an objective function that is calculated as the inner
product calculation between the experimental capacitance and the
reconstructed image capacitance. The GVSPM method is compared with
the conventional Landweber (LW) and iterative Tikhonov regularization
(ITR) methods in terms of capacitance residual, image error and image
correlation. Overall, the accuracy is strongly dependent upon the image type
and the iteration number, however the GVSPM method proved superior to
the LW and the ITR methods in the case of annular pseudo particle images.

Keywords: ECT, image reconstruction, GVSPM, ill-posed inverse problem
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List of symbols

C n × 1 measured capacitance column vector
Ci,j measured capacitance between a standard

electrode i and a reference electrode j
CR capacitances residual
DCR dispersion concentration rate for simulation
E m × 1 permittivity distribution column vector

(=particle concentration distribution)
I iteration number
IC image capacitance
IE image error
m spatial resolution, m = 32 × 32 = 1024
n total number of electrode pairs, n = 66
Nx x axial space resolution (=32)

Ny y axial space resolution (=32)
r position vector on the cross section, r = (x, y)
Se n × m sensitivity map matrix normalized with

the row elements’ maximum value
T state transition matrix in equation (23)
Vi(r) potential distribution on a cross section between

the ith and jth electrodes
Im m × m unit matrix
O n × 1 zero column vector
α gain value of Landweber method in

equation (16)
β area ratio of one pixel to the whole pipe cross

section
γ empirical value of iterative Tikhonov

regularization in equation (17)
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ε(r) relative permittivity distribution on a cross
section

λ eigenvalue in equation (24)

Superscripts

’ normalization with norm
∗ normalization with minimum value 0.0 and

maximum value 1.0
exp experimental data
ini initial number
k iteration number
T transpose matrix

Font Type

Italic scalar or element in matrix
Bold matrix or column vector
Bold Italic row vector

1. Introduction

The use of non-invasive monitoring, such as computed
tomography (CT), in multiphase flow measurement has
recently become increasingly popular. The electrical
capacitance CT has been investigated as a visualization
technique for the solid behaviour in solid–air two-phase flow
(Huang et al 1989, Halow and Nicoletti 1992, Dyakowski et al
1999). In capacitance CT, a sensor containing several
electrodes is wrapped around the circumference of a pipeline,
and the capacitances between the electrodes are measured.
The particle concentration distribution, which is based on the
permittivity distribution in a cross section, is obtained from
the experimental capacitances. This is performed using an
image reconstruction technique that is based on an ill-posed
mathematical inverse problem. Because inverse problems
are heavily dependent upon the system equation, a suitable
image reconstruction technique for this capacitance CT is
necessary. A variety of image reconstruction techniques
have already been proposed (Isaksen 1996). Recently,
iterative techniques such as the Landweber (LW) method
and the iterative Tikhonov regularization (ITR) method have
been widely used because of the relatively high accuracy
of their reconstruction images (Yang and Peng 2003).
These conventional reconstruction techniques, however, have
several drawbacks with regard to empirical value setting and
convergence at an infinite number of iterations. For example,
the Landweber method requires an empirical gain value in
order to converge upon the image, and it strongly depends
upon the iteration number. It indicates that an image that
has been processed over a suitable number of iterations will
become extremely distorted (Liu et al 2001). Therefore,
the Landweber method requires advance knowledge of the
empirical gain value and the empirical iteration number.
The iterative Tikhonov regularization method, on the other
hand, needs an empirical value to use the singular value
decomposition of the system equation to produce a pseudo
inverse matrix. These conventional reconstruction methods
are not able to accurately reconstruct an image with empirical
values because they do not use an objective function to confirm
the stability of the solution during the iterative process.

(a) (b)
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Figure 1. Overview of capacitance tomography. (a) Frontal view
and (b) Cross sectional view.

In order to overcome the drawbacks of these iterative
methods, Saito proposed a novel solution strategy called the
sampled pattern matching (SPM) method for ill-posed linear
inverse problems (Saito et al 1990). This inverse problem
solver was then generalized for various types of linear system
equations. The generalized solver, called generalized vector
sampled pattern matching (GVSPM), has already been applied
to the optimization of electron beam dosing (Saotome et al
1995, Yoda et al 1997). The key idea of GVSPM lies in an
objective function that estimates convergence from the angle
obtained by the inner product between the input vector and
the solution vector. However, the GVSPM method has not
yet been used as a reconstruction technique for the electrical
capacitance CT.

In this study, the new GVSPM method is applied to
the reconstruction of particle distribution images. This
paper details the characteristics of this method that were
examined using a simulation for pseudo particle concentration
distribution images. The results of this simulation were then
compared to those from the conventional Landweber and
iterative Tikhonov regularization methods. The results in three
areas were compared: capacitance residual, image error and
image correlation.

2. Governing matrix equation for capacitance CT

The capacitance CT sensor is shown in figures 1(a) and
(b). The 12 sensor electrodes are separated by insulation
materials (Yang 1996). The relationship between capacitance
and permittivity in a static-electro field is expressed by

Ci,j = − ε0

Vc

∮
r⊆�j

ε(r)∇Vi(r) · dr (1)

where i is the standard electrode number that ranges from 1
to 11, and j is the reference electrode number, which ranges
from i + 1 to 12. Ci,j is the measured capacitance between
the standard electrode i and the reference electrode j, ε0 is the
known vacuum permittivity, ε(r) is the relative permittivity
distribution on the cross section, r is a position vector on the
cross section: r = (x, y), Vc is the known voltage to the ith
electrode, �j is the area affected by the electric line of force and
Vi(r) is the potential distribution on the cross section between
the ith and jth electrodes. Even though the values of ε(r) and
Vi(r) in equation (1) are unknown, ε(r) can be approximated
by assuming that the electric charge’s linear coupling at a
position r with a weight of sensitivity in �j area is the total
capacitance. As detailed in a previous work (Williams and
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Figure 2. Space resolution.

Beck 1995, Polydorides and Lionheart 2002), when a particle
exists solely in a infinitely small �x × �y area at the centre
point r = r0 between the i and j electrodes, and air exists at
the remaining positions, the Laplace equation

∇ · [ε(r0)∇V (r0)] = 0 (2)

is assumed to hold in the cross section. A finite element method
can be used to discretize equation (2), and the distribution of
Vi(r) can be obtained by substituting the boundary conditions
into equation (1). Next, the capacitance value Ci,j

r0 with
a particle at r = r0 is obtained. The sensitivity value for a
particle at r = r0 is calculated using

Sr0
i,j =

(
1

β

)
Cr0

i,j − Cair
i,j

C
particle
i,j − Cair

i,j

β =
(

D2

NxNy

) /
π

(
D

2

)2

(3)

where Cair
i,j and C

particle
i,j are the capacitances when particles and

air occupy the pipe cross section, respectively. The coefficient
β represents the area ratio of one pixel to the entire pipe cross
section, D is the diameter of the pipe, and Nx and Ny are x
and y axial spatial resolutions, as depicted in figure 2. The
sensitivity values are repeatedly obtained from equations (2)
and (3) at every position and for all electrode pairs from 1–2
to 1–7, considering the symmetrical structure. Finally, Ci,j is
expressed as the linear coupling of ε(r) with weight Sr

i,j under
an assumption of small spatial perturbations of ε(r), that is

Ci,j =
(Nx,Ny)∑
r=(1,1)

Sr
i,j ε(r). (4)

Equation (4) can be rewritten as the following matrix
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Figure 3. Sensitivity map matrices. (Standard electrode: 1, reference electrodes: 2–7.)

expression:

C = SeE. (5)

In other words, the capacitance CT can be used to obtain the
permittivity distribution of particles E in the cross section from
both the known sensitivity map matrix Se and the measured
capacitance matrix C. In the case of 12 electrodes and
32 × 32 = 1024 pixels in the pipe cross section, as in
figure 2, the sensitivity matrix Se in equation (5) is a 66 ×
1024 matrix, the capacitance matrix C is a 66 × 1
column vector, and the permittivity distribution matrix E is
a 1024 × 1 column vector. The mathematical method used
to obtain the permittivity matrix E from both the capacitance
matrix C and the sensitivity matrix Se is an ill-posed inverse
problem because the inverse matrix S−1

e does not exist.
The raw values of Se have an extremely wide range; the
sensitivity to an adjacent electrode pair is more than 100
times larger than that to an opposing electrode pair. Figure 3
shows the two-dimensional distribution revised in the first
through sixth rows of the sensitivity matrix Se. The white
colour represents high values and the black colour represents
low values.

3. GVSPM method theory for inverse problem

3.1. GVSPM objective function

Although the generalized vector sampled pattern matching
method is an iterative method, it has one characteristic that
other iterative methods do not have: the inclusion of an
objective function in the general solution (Endo et al 2002).
As a result, the GVSPM method is able to converge upon
a reconstructed particle concentration image stably without
setting a gain value. The objective function of the kth iterative
particle distribution E′(k), f(E(k)), is given by

f(E(k)) = C ′(exp) · C ′(k) → 1.0. (6)

This objective function uses an inner product to determine
whether the solution converges between the capacitance of
kth iterative particle concentration image, C ′(k), and the
experimental capacitance, C ′(exp). Here, the prime symbol
′ indicates normalization by the norm, that is

C ′ = C

|C| .
In this equation, | | indicates the norm. For instance, the
norm of C is the square root of the square sum of each element
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|C| =
√

c2
1 + c2

2 + · · · + c2
n. (7)

The lower case c is an element of C, and n is the total number
of the electrode pairs, n = 66. The particle concentration
distribution obtained by GVSPM method is E′(k) when f(E(k))

approaches 1.0.

3.2. Iterative solution by the GVSPM method

From equation (5), the capacitance matrix C can be expressed
using the ith column vector of Se, Sei , and the ith element of
E, ei, as

C = SeE =
m∑

i=1

(Seiei) (8)

where m is the spatial resolution, m = 1024. Equation (8)
normalized by the norm results in

C
|C| =

m∑
i=1

(
Sei

|Sei |
ei

|C| / |Sei |
)

C′ =
m∑

i=1

(S′
eie

′
i ) = S′

eE′
(9)

where C and Se are normalized by their norms. However, E
is not normalized by itself. The initial capacitance obtained
from the experiment C(exp) and the initial value of E given by
the linear back projection method E(ini) can be combined in
equation (9) to calculate the normalized E′(ini)

E′(1) ≈ S′
e
T C′(exp). (10)

Here, S′T
e is the transpose matrix of S′

e. E′(ini) is an approximate
particle concentration distribution because S′T

e S′
e is not a unit

matrix. Substituting the value for E′(ini) in equation (10) for
the E′ in equation (9) results in the norm-normalized C′(1):

C′(1) = S′
eE′(ini)

|S′
eE′(ini)| . (11)

The capacitance difference between C′(exp) and C′(1), �C′(1),
and the approximate value of the permittivity difference are

�C′(1) = C′(1) − C′(exp) (12)

�E′(1) ≈ S′
e
T �C′(1). (13)

The first iterative permittivity value E′(1) is obtained by
subtracting equation (13) from the initial permittivity value
E′(ini)

E′(1) = E′(ini) − �E′(1) = E′(ini) − S′
e
T �C′(1)

= E′(ini) − S′
e
T

(
S′

eE′(ini)

|S′
eE′(ini)| − C′(exp)

)
. (14)

Based on equation (14) the relationship between the kth
iterative solution, E′(k), and the (k − 1)th iterative solution,
E′(k−1), is

E′(k) = E′(k−1) − S′
e
T �C′(k−1)

= E′(k−1) − S′
e
T

(
S′

eE′(k−1)∣∣S′
eE′(k−1)

∣∣ − C′(exp)

)
. (15)

The Landweber and the iterative Tikhonov regularization
methods are provided below as a reference (Yang and Peng
2003).

The Landweber iterative method is

E∗(k) = E∗(k−1) − αST
e �C∗(k−1)

= E∗(k−1) − αST
e (SeE∗(k−1) − C∗(exp)). (16)

The iterative Tikhonov regularization is

E∗(k) = E∗(k−1)

− (
ST

e Se + γ I
)−1

ST
e

(
ST

e E∗(k−1) − C∗(exp)
)
. (17)

In these equations, C∗ is a normalization using a minimum
value of 0.0 and a maximum value of 1.0 at every iteration,
which is similar to the GVSPM method. E∗, though, is not
normalization by itself. The Landweber and the iterative
Tikhonov regularization methods need empirical values α and
γ , however, the GVSPM method does not need an empirical
value.

3.3. Inclusion of objective function in iterative solution

The distinguishing characteristic of GVSPM is that it includes
an objective function in the iterative solution. Equations (6)
through (11) result in

1.0 − f(E(k)) = 1.0 − C ′(exp) ·
[

S′
eE′(k−1)

|S′
eE′(k−1)|

]T

→ 0.0. (18)

Because S′
eE′(k−1)/|S′

eE′(k−1)| is a column vector C′(k), a
transpose operation is needed to convert it to a row vector.
Multiplying equation (18) by the row vector C ′(exp) obtains

C ′(exp) − C ′(exp) · C ′(exp)

[
S′

eE′(k−1)

|S′
eE′(k−1)|

]T

→ O (19)

where O is a 1 × n zero row vector. Because C ′(exp) ·C ′(exp) =
1.0, equation (19) becomes

C ′(exp) −
[

S′
eE′(k−1)

|S′
eE′(k−1)|

]T

→ O. (20)

Equation (20) can be reduced to

C ′(exp) − S′
eE′(k−1)∣∣S′
eE′(k−1)

∣∣ → O. (21)

The left-hand side of equation (21) is exactly the same as
�C′(k−1) in the iterative solution in equation (15). Therefore,
the iterative solution in equation (15) contains the objective
function. Figure 4 shows the iteration process in Cartesian
coordinates for the case of n = 3. In the iterative process, the
sampled vector C ′(k) becomes the experimental vector with
experimental capacitance C ′(exp), because the inner product
becomes approximately 1.0.

3.4. Convergence condition

Using equation (15), the relationship between the kth iterative
solution, E′(k), and the (k − 1)th iterative solution, E′(k−1), can
be rewritten as

E′(k) = S′
e
T C′(exp) +

(
Im − S′

e
T S′

e

|S′
eE′(k−1)|

)
E′(k−1) (22)

where Im is a m × m unit matrix. From this equation, the state
transition matrix, T, between E′(k) and E′(k−1) is

T = Im − S′T
e S′

e

|S′
eE′(k−1)| = Im − S′

e
T S′

e

|C′(k−1)| . (23)
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Sampled pattern vector: C' (k)

Measured capacitance vector: C' (exp)

1 
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0.1)((exp))( →= kk C'C')f(E
Iteration under the objective function: 

1)(1)()( ∆ −− −= kTkk C''SE'E' e
)()( kk E'SC' e=

Figure 4. Iteration process of GVSPM in the case of n = 3.

Table 1. Differences between Landweber, iterative Tikhonov regularization and GVSPM.

Objective Convergence
Empirical function for at infinite

Normalization of C Normalization of Se value convergence iteration

LW Every iteration with Initial normalization α necessary None Unknown
0.0 and 1.0 with each row element

ITR Every iteration with Initial normalization γ necessary Minimum least Convergence
0.0 and 1.0 with each row element square

GVSPM Every iteration with Normalization with the Unnecessary Inner product Convergence
the norm norm of the column between C′(exp)

vector as well as the and C′(k)

initial normalization

LW: Landweber; ITR: Iterative Tikhonov regularization; GVSPM: Generalized vector sampled pattern
matching.

Assuming that E′(k−1) can be represented by the eigenvalue λ

of the state transition matrix T, since TE′(k−1) = λE′(k−1), this
expression can be expanded to

E′(k) = λE′(k−1) + E′(ini) = λ(λE′(k−2) + E′(ini)) + E′(ini)

= (λk + λk−1 + · · · + Im)E′(ini). (24)

The symmetrical determinant matrix is obtained from the
definition of an eigenvalue

|λ Im − T| =

∣∣∣∣∣∣∣
λ κ12 • κ1m

κ12 λ • κ2m

• • • •
κ1m κ2m • λ

∣∣∣∣∣∣∣ = 0. (25)

It is obvious that the modulus of the off-diagonal elements
in equation (25) is |κij | � 1.0 because the normalized column
vectors of matrix S′

e are less than 1.0. This yields an accurate
and stable solution when k → ∞. Table 1 provides a
summary of the differences between the methods based upon
the above explanation. The following section explains how
these differences influence the solutions.

4. Image reconstruction and discussion

4.1. Image reconstruction conditions

In this section, the Landweber, iterative Tikhonov
regularization and GVSPM methods are tested using pseudo
particle concentration distribution simulation images of solid–
air two-phase flow. The following guidelines are established
to compare each method impartially (Zhao et al 2002).

(1) The GVSPM normalized sensitivity matrix is normalized
with the norm of the column vector, as detailed in
equation (9).

(2) The first capacitance, which is obtained by multiplying
the sensitivity matrix and the original pseudo image, is
normalized with a minimum value of 0.0 and a maximum
value of 1.0. The first capacitance is the measured
capacitance in the real experiments.

(3) In both the original pseudo images and the final
reconstructed images, all the pixels outside the pipe are
ignored because the area outside the pipe is not relevant
to the image comparisons.

(4) The capacitances for the LW and ITR methods are
normalized with a minimum value of 0.0 and a maximum
value of 1.0 after each iteration. The reconstructed image
is not normalized by itself.

(5) The capacitances calculated with the GVSPM method are
normalized with the norm after each iteration, as shown in
equation (15). The reconstructed image is not normalized
by ITR.

(6) Because the results are normalized by the norm after each
iteration, the final images of the GVSPM method provide
only relative values. Therefore, the final images and final
capacitances must be normalized with a minimum value
of 0.0 and a maximum value of 1.0 to calculate CR, IE

and IC.
(7) Not all methods utilize a threshold value at each iteration.
(8) The reconstructed images with dispersion concentration

rates (DCR) are compared with 0% DCR to calculate CR,
IE and IC.

Figure 5 shows the simulation images for four types of pseudo
particle distributions. Because the actual solid–air two-phase
flow image consists of the main particle bulk and dispersion
particles around it, 10 different dispersion concentration rates
between 0% and 100% are considered. For example, a 10%
DCR correlates to a random white noise value between 0.0 and
0.1, which highlights the dispersion particles. These values are
assigned to each pixel in the original 0% DCR image. Values
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Figure 5. Pseudo particle images. (a) Pseudo particle image with 0% DCR, (b) pseudo particle image with 100% DCR.
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Figure 6. α and IC in LW in the case of I = 30.

over 1.0 replace all the pixels with the original pseudo particle
images. Figure 5(a) displays the pseudo particle image with
a 0% DCR and figure 5(b) shows the representative images
for a 100% DCR. In these figures, (∗-1), (∗-2), (∗-3) and
(∗-4) are the bottom, the annular, the centre and the four-
bulk pseudo particles image within the pipe, respectively. In
these pseudo images, the red pixels indicate the highest particle
concentration, 1.0, and the blue pixels indicate air.

In order to estimate each method quantitatively, the
capacitance residual CR, the image error IE and the image
correlation IC are calculated using the following:

CR =
√∑n

i=1

(
c
(k)
i − c

(exp)

i

)2

√
(C(exp))2

IE =
√∑m

i=1

(
e
(k)
i − e

original
i

)2

√
(Eoriginal)2

IC =
∑m

i=1

[(
e
(k)
i − E(k)

)(
e

original
i − Eoriginal

)]
∑m

i=1

√(
e
(k)
i − E(k)

)2 ∑m
i=1

√(
e

original
i − Eoriginal

)2
.

(26)

In these equations, e
(k)
i is the ith element of the final

reconstructed image E(k), E(k) is the special mean pixel value of
E(k), e

original
i is the ith element of the original pseudo image

Eoriginal, and c
(k)
i is the ith element of the final capacitance

C(k) calculated from the final reconstructed image E(k).
The low value of CR and IE, the high value of IC mean accurate
reconstructed images.

The LW and ITR methods are highly dependent upon
coefficients α and γ to successfully reconstruct the images.
These coefficients are fixed in order to compare the
reconstructed images. Figure 6 shows the relationship between
the LW method’s coefficient α and the image correlation

Coefficient γ  [-] 

Im
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e 
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at
io

n 
I C

[-
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Four-bulk 

Annular 

Figure 7. γ and IC in ITR in the case of I = 30.

IC to the four types of 0% DCR image at iteration number
I = 30 within the 0.1 to 3.0 range. Figure 7 shows the
relationship between the ITR method’s coefficient γ and the
image correlation to the 0% DCR image at I = 30 within
the 0.001 to 0.1 range. In the case of the centre and bottom
images, α = 1.5 and 2.0 indicate the relatively high value of
IC, and in the case of the four bulk and annular images, α > 0.5
indicate the relatively high value of IC. Considering the whole
situation, the gain α in equation (16) is fixed at 2.0 and the
γ in equation (17) is fixed at 0.01 for all the pseudo particle
images because of the relatively high correlation value. In
order to account for the original differences between various
percentage DCR images and the 0% DCR images, CR, IE and
IC are calculated before the reconstruction. Figure 8 shows
the results of these actions. This figure suggests that CR and
IE increase, and IC decreases, as DCR increases for all image
patterns.

4.2. Iteration number and reconstructed images

Before the reconstructed images with DCR were compared,
the number of iterations and three estimation categories: CR,
IE and IC are calculated for the 0% DCR representative image.
The simulated measurement capacitance data are noise-free.
Figures 9 to 12 show the bottom, the annular, the centre and
the four-bulk reconstructed image results for CR and IR among
the three categories, respectively. The figures Ic are omitted
because it is not difficult to guess the value from the later
figures in the following section. These figures indicate which
methods most strongly depend upon the image type and the
iteration number. First, the bottom image in figure 9 reveals
that LW is superior to GVSPM and ITR regardless of the
number of iterations. Figure 9(a) shows that the value of CR

for the LW method is extremely low, and is approximately
the same as for the GVSPM method. Figure 9(b) shows that
the value of IE for LW remains low regardless of the iteration
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Figure 8. Original differences between various DCR images and 0% DCR image. (a) Capacitance residual, (b) image error, (c) image
correlation.

(a) CR (b) IE

0.4 

C
R
 [

-]
 

0.0 

0.2 

10 50 100
I[-] 

GVSPM 

LW 

ITR 

10 50 100

I E
 [

-]
 

I [-] 

0.0 

0.2 

0.4 

0.6 

GVSPM 

LW 

ITR 

Figure 9. Bottom image.

(a) CR  (b) IE

10010 50 

0.1 

I [-] 
0.0 

0.2 

I [-]

0.0 

1.0 

2.0 

10 50 100

Figure 10. Annular image.

number. On the other hand, the IE values for the ITR method
decrease with the iteration number, but never reach the LW
level. Finally, the IC value for the LW method was the highest,
when compared with the GVSPM and the ITR methods, and it
maintained its high value even after large numbers of iterations.

Secondly, in the case of the annular image shown in
figure 10, considering the three estimation categories as a
whole, it is determined that the GVSPM method is superior
to the LW and ITR methods. Especially, when I < 30, the
GVSPM method is clearly the best. In figure 10(a), the value
of CR for the GVSPM method is quite low. However, these
values for the LW and ITR methods are extremely high. In
figure 10(b), IE for the GVSPM and ITR methods are very low,
and when I < 30, the values for the GVSPM are much lower
than the ITR and LW methods. Moreover, IC values of the
GVSPM and ITR were superior to the LW method. When I <

40, though, the Ic values for the GVSPM method were higher
than the ITR method.

Thirdly, the superior method in the case of the centre
image in figure 11 is strongly dependent upon the iteration
number I. As is evident from this figure, the graph patterns
are vastly different from the previously mentioned images.
Considering the three estimation categories as a whole, it is
determined that the LW method is superior to the GVSPM
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Figure 11. Centre image.
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Figure 12. Four-bulk.

and ITR methods when I < 40. However, when I > 40, the
GVSPM method becomes superior to ITR and LW. As shown
in figure 11(a), the values of CR for the GVSPM and LW
methods are considerably lower than the ITR method, which
is extremely high. As shown in figure 11(b) the LW value of
IE is very low under I = 40, however, it dramatically increases
over I = 40. The IC values for the GVSPM and ITR methods
improve until about I = 100, when they become saturated. The
IC value for the LW method, though, decreases dramatically
as I increases over I = 40.

Lastly, the four-bulk reconstructed images displayed in
figure 12 are strongly dependent upon I. As a whole, it is
very difficult to determine the best method. Figure 12(a)
shows that the CR value for the ITR method is extremely
high above I = 100. This is a highly negative characteristic.
However, figure 12(b) shows that the ITR IE value is lower than
those of GVSPM and LW. The IC value for ITR was relatively
high. These are positive characteristics for this method. The
GVSPM and LW methods also have positive and negative
characteristics.
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Figure 13. (a) Capacitance residual, (b) image error and (c) image correlation in the case of bottom image.

 
 
 
 
 
 
 
 

(a-1) I = 30      (b-1) I = 30      (c-1) I = 30
 
 
 
 
 
 
 

(a-2) I = 100           (b-2) I = 100           (c-2) I = 100 
(a) (b) (c)

DCR [%] 

0.25  

C
R
 [

-]
 

0  
0.05  

0.1  

0.15  
0.2 

0 50 100 

GVSPM 
LW 
ITR 

I E
 [

-]
 

0

0.5

1

1.5

2

2.5

DCR [%]
0 50 100 

GVSPM
LW

ITR

I C
 [

-]
 

0

0.2

0.4

0.6

0.8

1

DCR [%] 
0 50 100 

GVSPM 
LW 

ITR 

DCR [%] 

C
R
 [

-]
 

0 
0.05

0.1 
0.15

0.2 
0.25

0.3 

0 50 100 

GVSPM 
LW 

ITR 

I C
 [

-]
 

0

0.2

0.4

0.6

0.8

1

DCR [%] 
0 50 100 

GVSPM 
LW 

ITR

I E
 [

-]
 

0

0.5

1

1.5

2

2.5

DCR [%]
0 50 100

Figure 14. (a) Capacitance residual, (b) image error and (c) image correlation in the case of annular image.

4.3. Comparison among reconstructed images
including DCR

Figures 13 to 16 show the estimation categories of the bottom,
the annular, the centre and the four-bulk pseudo images in-
cluding the dispersion concentration rate. In these figures, (a),
(b) and (c) show the capacitance residual CR, the image
error IE and the image correlation IC, respectively. The
(∗-1) and (∗-2) display the results at iteration numbers I =
30 and 100, respectively. In general, CR and IE increase and
IC decreases as DCR increases at all I. The superior method is
highly dependent upon the image type, the iteration number
and DCR. In the case of the bottom image in figure 13, the
LW method proves superior to the GVSPM and ITR methods
regardless of the iteration number and DCR. Figures 13(a-1)
and (a-2) show the CR value for the LW method is very low
and the same as the GVSPM value, however, the CR value for
the ITR method is extremely high. Figures 13(b-1) and (b-2)

display that the IE value for LW is always the lowest, regardless
of I and DCR. Moreover, the IC value for LW is much higher
than for GVSPM and ITR, regardless of I and DCR, as shown
in figures 13(c-1) and (c-2).

Next, the annular image in figure 14 is considered.
Considering the three estimation categories as a whole,
GVSPM is clearly superior to LW and ITR for all DCR values.
As shown in (a-1) and (a-2), the value of CR for the GVSPM
and LW methods is lower than CR for the ITR method. In
figure 14(b-1), where I = 30, the IE value for GVSPM is
considerably lower than LW and ITR regardless of DCR. As
shown in (b-2) in the case of I = 100, the IE values for GVSPM
and ITR are lower than LW, specifically, when DCR > 30%,
the IE value for GVSPM is lower than ITR. Moreover, in
figure 14(c-1), where I = 30, the IC value for GVSPM is
higher than those of LW and ITR regardless of DCR. When
DCR surpasses 30%, though, as in figures 14(c-2) I = 100, the
IC value for the GVSPM is higher than those of LW and ITR.
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Figure 15. (a) Capacitance residual, (b) image error and (c) image correlation in the case of centre image.
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Figure 16. (a) Capacitance residual, (b) image error and (c) image correlation in the case of four-bulk image.

The reconstructed images in the case of the centre image
of figure 15 are highly dependent on I and DCR. It is known
from the results in section 4.2 that when I < 40 and DCR <

80%, LW is superior to GVSPM and ITR. And when I <

40 and DCR > 80%, ITR is superior to GVSPM and LW.
However, when I > 40, considering CR, IE and IC as a whole,
GVSPM and LW become superior to ITR. More specifically,
in the case in figure 15(a-1), where I = 30, the values of
CR under DCR = 80% for the GVSPM and LW methods are
smaller than those of ITR. In the case of (a-2) I = 100, these
differences in CR become very small across all three methods.
Figure 15(b) shows that the IE values for the (b-1) I = 30 case
become almost the same for all three methods. However, as
the number of iterations increases, as in (b-2) I = 100, the
IE values for GVSPM and ITR improve and decrease below
that of LW. Here, the GVSPM IE values are almost the same
as those for ITR for all DCR. The results from figure 15(c)

indicate that the IC correlation values for LW are higher than
those of GVSPM and ITR in the case of (c-1) I = 30 and
DCR < 80%. However, in the case (c-2) I = 100, the GVSPM
and ITR correlation values become superior to LW, whose IC

value becomes extremely low.
Finally, the four-bulk reconstructed images shown in

figure 16 are strongly dependent on I and DCR. It is difficult to
determine the best method. When I < 30, the value of CR for
the LW is clearly superior to those of GVSPM and ITR for all
DCR as shown in (a-1). However, these differences diminish
as I increases, as shown in (a-2). Figure 16(b) displays the
results for IE. In the (b-1) I = 30 case, the ITR value is lower
than the LW and GVSPM cases except for DCR = 60%. As
shown in (b-2), the IE value for the ITR becomes lower than
those of LW and GVSPM. Moreover, the IE value for LW
becomes unstable against DCR in the (b-2) I = 100 case. And
although the IC value for LW is higher than that for GVSPM
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(c) 

Figure 17. Reconstructed images of 0% DCR. (a) Reconstructed
image by Landweber, (b) reconstructed image by iterative Tikhonov
and (c) reconstructed image by GVSPM.

Table 2. Best method for image types.

Image type Best reconstruction method

Bottom image LW
Annular image GVSPM
Centre image

I < 40 DCR < 80% LW
DCR > 80% ITR

I > 40 GVSPM or LW
Four-bulk image Difficult to judge

GVSPM: generalized vector sampled pattern
matching; ITR: iterative Tikhonov
regularization; LW: Landweber.

and ITR in figure 16(c-1) I = 30, GVSPM and ITR’s IC values
become superior to LW as I increases, as is evident in (c-2),
however, LW is not stable against DCR. The details for each
method are summarized in table 2 below. It is clear which
method is the best for the images. According to figures 13
through 15, the category difference between I = 30 and I =
100 of GVSPM is not so large as compared with that of LW
or ITR. This is a strong point of GVSPM, which LW or ITR
does not have.

The representative reconstructed images that were
obtained using each method are presented in figures 17 and
18 as a reference. Figure 17 shows the images for I = 30 and
0% DCR, and figure 18 shows the results for I = 30 and 100%
DCR. From these figures it is evident that the annular images
reconstructed using the GVSPM method are very clear, but
the centre images reconstructed using GVSPM are blurred.
According to figure 17, GVSPM has a tendency of artefact
when the particle concentration is partial in the case such as
the bottom image. However, a uniform particle concentration
image such as annular image in the cross section does not
produce the artefact. It is confirmed that the f(E(k)) value
converges to 1.0 and then becomes saturated over I = 30 in

          
(a-1)Bottom (a-2)Annular (a-3)Centre (a-4)Four-bulk 

(a)

             
(b-1)Bottom (b-2)Annular (b-3)Centre (b-4)Four-bulk 

 (b)

         
 (c-1)Bottom (c-2)Annular (c-3)Centre (c-4)Four-bulk 

(c)

Figure 18. Reconstructed images of 100% DCR. (a) Reconstructed
image by Landweber, (b) reconstructed image by iterative Tikhonov
and (c) reconstructed image by GVSPM.

all conditions. This highly accurate reconstruction does not
use an empirical value because the GVSPM method contains
an objective function that makes the inner product between
C′(exp) and C′(k) in equation (6) become 1.0 (�C′(k−1) → O in
equation (15)). However, because the LW does not utilize an
objective function and ITR has only a minimum least square
criterion, matching between the experimental capacitance and
the reconstructed image capacitance is not compensated during
the iteration process.

5. Conclusions

The generalized vector pattern matching method has been
applied to an ill-posed inverse problem involving the electrical
capacitance for solid–air two-phase flow. Four types of pseudo
particle distribution images with dispersion concentration rates
were used to compare the GVSPM method to the conventional
Landweber and iterative Tikhonov regularization methods.
The results of these comparisons are detailed below:

(1) GVSPM is superior to the LW and ITR methods for
annular pseudo particle images in terms of capacitance
residual, image error and image correlation, even though
the GVSPM method does not use an empirical value. The
GVSPM iteration process also proved to be very stable.

(2) In the case of the bottom pseudo particle, the LW method
outperformed the GVSPM and ITR methods.

(3) For the centre image and four-bulk image cases, the
superior method depends on the iteration number and the
DCR. For example, in the case of the centre image, when
I < 40 and DCR < 80%, the LW proved superior to the
GVSPM and ITR methods. When I < 40 and DCR >

80%, the ITR proved superior to the GVSPM and LW
methods. However, when I > 40, the GVSPM and LW
methods outperformed the ITR method. In the case of
the four-bulk image, it is difficult to determine the best
method.
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