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FASTER MAGNETIC FIELD COMPUTATION USING LOCALLY 
ORTHOGONAL DISCRETIZATION 

Y. Saito, Y. Kiihino, S. Hayano, H. Nakamura, N. Tsuya and 2. J. Cendes* 

In this paper, we present s new approach fo generating complementary 
finite element solutions. Instead of utilizing the physical dualktg inherent 
in the complementary vmiatio~al approach, we exploit the geomelric 
duality inherent in some finite element discretization procedures. h i e d ,  
we show that a geometric duality exists between Delaunay triangles and 
Voronai polygons and that this duality provides natural complementary 
error bounds for finite element modeling. Since only one potential 
function is required with the geometric duality principle, the resulting 
solution procedure is considerably simpler and more efficient than the 
two potential approach. Further, the drscretizations that result from the 
two geometric approximations may be directly averaged to form a highly 
efficient hybrid scheme.  Computations show the hybrid discretization 
procedure to be approximately one order of magnitude more accurate 
than the standard firsborder finite element scheme. 

LOCALLY ORTHOGONAL DISCRETIZATIONS 

AssumDtions 

Numerous problems in electrical engineering reduce to solving the 
Poisson equation in two dimensions 

where X is a parameter depending on the medium, Q is a, scalar or axial 
component of a vector, and cr is the source density. At the boundary 
between regions 1 and 2, the following boundary conditions are assumed: 

The concept of Delaunay triangulation was introduced in finite element 
modeling by Cendes and Shenton. In this procedure, the Delaunay 
triangulation of an arbitrary set of points is constructed by considering 
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dimensional equation in either the primal or in the dud sets of variables 

x ( ~ 2 # / a y 2 )  = -( 1/2jb, 
X(a24/a2) = -( 1/2)u* 

(4) 
(5) 

Functionals 

On the local coordinate system shown in Figure l(a), nodes i and j are  
located on the boundary between the regions 1 and 2. This means that 
the derivative a@y is common to both regions f and 2 in Figure l(a). 
Thereby, the functional for (2) and (4) is written as 

where the integrals are evaluated over the hatched regions in Figure l(a). 

On the other hand, nodes k: and I are located on the x-axis in Figure 
l(a). In this case, the derivative h(&b/8 x) is common to both regions 1 
and 2. This yields a complementary functional G(4) for (3) and (5) 
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where 4 denotes the prescribed value of potential at nodes k and I and 
the integrals are again evaluated over the hatched regions in Figure l(a). 

Combining (6) with (7) leads to the hybrid functional H(4) 

To show that the functional F(4) in ( 6 )  reaches a minimum at the true 
solution of (4, let 4 denote this true solution, and let q5 be some 
differentiable function that is non-zero in the hatched regions in Figure 
l(a) and vanishes at the prescribed boundary nodes. The approximate 
functional F(#+qb ) is then written as 

P 
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Since the last ferm on the right side of (9) is always positive, 8 minimum 
is reached when the parameter E is zero. In other words, F(4) in (6) is a 
primal functional. 

Since the last term OR the right side of (11) is always negative, the 
functional G(#+@ C ) in (11) will be a maximum when the parameter e is 
zero. Thus G(#) in (7) is a complementary functional. It follows that 
minimizing (9) yields the upper bound solutions, and maximizing (11) 
yields the lower bound solutions.8 We therefore conclude that the 
approximate solutions 9 obtained by using (9) are greater than the exact 
sdution # but that the approximate solutions # c obtained by using (11) 
a r e  smaller than the exact solution 4 

P 

$$ = 4 + E%$ 0 3 )  

+c = 4 - 4 2  (14) 

Here pcI, and 4 are differentiable functions that are non-zero in the 
hatched regions in Figure I(a) and vanish at the prescribed boundary 
nodes. 
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By means of (6)-( 14), it  follows that the hybrid functional is bounded 

When (13) and (14) are introduced into (6 )  and (7) respectively, the 
extremization of the hybrid functional (8) yields 

Equations (17) and (18) prove that extrernizing the hybrid functional 
provides correct solutions to Equation (1). 
The convergence of the numerical solution is accelerated by averaging 

the approximate solutions in (13) and (14). For example, the mid-side 
potential # U in Figure l(a) is given by 

The average potential # in (19) has higher accuracy than either # . or +k 
since the nodal potential 4 .  is determined from the primal functional 
while the potential #k is determined from the complementary functional. 
Provided that the term q b  in (13) and (14) is therefore canceled 
by using the interpolation process in (19). 
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Figure 1. (a) General discretization showing the Delaunay 

triangles and the associated Voronoi polygons. The 
nodes for the primal variables are located at the 
triangle vertices, while the nodes for the 
complementary variables are located at the 
circumcenters of the Delaunay triangles. (b) The 
primal network between the nodes i and j in the 
subregion of Figure 1( a)+ (c) The complementary 
network between the nodes k: and I in the subregion of 
Figure I( a). 
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Node Equations 

Substituting (20) into (6) and minimizing the result yields discretixed 
forms Far example, for node i in Figure l(a) the result is 

-( 1/4)(abal+mtr2)  = 0. 

Equations for the other nodes in the primal system a r e  obtained in the 
same way. The full set of node equations gives the primal network 
shown in Figure l(b). It is interesting to note that the network 
parameters in Figure l(b) coincide with those produced by the first order 
finite element method.' 
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To illustrate the method, we applied it to the calculation of the 
magnetic field in ferromagnetic material of square cross-section. This 
example has been used by Hammond and Tsiboukis for demonstrating 
the dual finite element 

By symmetry, only part of the square must be computed as shown in 
Figure 2. In this example, #,A and u of Equation (I) correspond to the 
axial component of the vector potential, inverse permeability, and 
current density, respectively. 

Figure 3 shows the results of computations obtained by the new 
method, as well as results obtained by using the first order finite element 
method. As is evident from Figure 3, the use of either the primal or the 
complementary network system is inferior to the conventional first order 
finite element method, However, the hybrid method based on averaging 
the primal and complementary systems is far superior to the 
conventional first order finite eiemenb method and provides nearly an 
order of magnitude improvement in accuracy for a given number of 
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Figure 2. A highly permeable conductor of square cross-section 
analyzed in [Z]. 
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nodes. 

Figure 4 provides a comparison of the equipotential lines obtained by 
means of the hybrid method and by the first order finite element method 
for a small mesh (N-10). While the solution generated by the finite 
element method departs -significantly from the analytical solution with 
this coarse mesh, the solution produced by the hybrid method is quite 
accurate* Thus the local orthogonal discretization procedure provides 
excellent potential distributions even with extremely small meshes, 
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A comparison of the errors in solving the problem 
Figure 2 expressed in terms of the absolute values 
error in the functionals. 
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A new method of computing two dimensional magnetic fields has been 
developed. The method is based on the geometrical duality of Delaunay 
triangles and Voronoi polygons. Since these geometric structures are 
locally orthogonal, they provide complementary solutions without the 
complications engendered by dual energy-dual potential methods. 

To obtain solutions of similar accuracy in an example problem, the new 
method required about one-tenth of the  nodes and considerably less 
computer time than the conventional first order finite element method. (a) (b) 

Figure 4. Equipotential lines for the problem in Figure 2. (a) 
The dotted lines were produced by the local orthogonal 
discretization method. (b) The dotted lines were 
produced by the conventional first order finite element 
method. 
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