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Abstract - Because of their simplicity and flexibility, first order
triangular finite elements are the most widely used type of finite element
in magnetic field computation. However, in the first order finite element
procedure, a relatively large number of mesh points is required to obtain
good solutions. In order to overcome this difficulty, we propose a new
method of magnetic field computation based on locally orthogonal
discretizations. Memory requirements and solution times are
dramatically reduced by the new method.

INTRODUCTION

The application of complementary variational principles to magnetic
field computation has been an active area of research in recent yea.rs.l_!5
Penman, Hammond, and their co-workers have employed complementary
variational principles to obtain more accurate field values by averaging
complementary solutions than is possible with one-sided methods;l"s
Cendes and Shenton have employed complementary variational principles
to determine local error bounds suitable for adaptive mesh

refinement.*~> This work on complementary variational principles has
been very valuable and has led not only to better magnetic field solutions
but also to greater physical understanding. However, the dual finite
element approach has a serious disadvantage: With this type of analysis,
it is necessary to develop and to use two different variational principles
and two different potential functions to generate the complementary
solutions. This is sometimes a difficult and an expensive task.

In this paper, we present a new approach to generating complementary
finite element solutions. Instead of utihzing the physical dualily inherent
in the complementary variational approach, we exploit the geometric
duality inherent in some finite element discretization procedures. Indeed,
we show that a geometric duality exists between Delaunay triangles and
Voronoi polygons and that this duality provides natural complementary
error bounds for finite element modeling. Since only one potential
function is required with the geometric duality principle, the resulting

solution procedure is considerably simpler and more efficient than the
two potential approach. Further, the discretizations that result from the

two geometric approximations may be directly averaged to form a highly
efficient hybrid scheme. Computations show the hybrid discretization
procedure to be approximately one order of magnitude more accurate
than the standard first-order finite element scheme.

LOCALLY ORTHOGONAL DISCRETIZATIONS

Assumptions

Numerous problems in electrical engineering reduce to solving the
Poisson equation in two dimensions

N&%*¢/92°) + No%¢/0y") = —o, (1)

where A is a parameter depending on the medium, ¢ is a scalar or axial
component of a vector, and & is the source density. At the boundary
between regions 1 and 2, the following boundary conditions are assumed:

3¢/3 yll = 6¢/8y]2 (2)

M(06/0z); = 2, (94/0z)], (3)

The concept of Delaunay triangulation was introduced in finite element

modeling by Cendes and Shenton.*® In this procedure, the Delaunay
triangulation of an arbitrary set of points is constructed by considering

the properties of its geometric dual — the set of Voronoi polygons.
Delaunay triangles are related to Voronoi polygons in that the
circumcenters of Delaunay triangles are the vertices of the Voronoi
p<:»l3,rgonz=;.4“'6 An important property of Delaunay triangles is the fact
that the distance between neighboring triangle circumcenters -- i.e. the

lengths of the sides of the associated Voronoi polygons -- cannot be
negative.

Figure 1{a) presents two triangles in a Delaunay mesh showing the
centers k and ! of the two triangle circumcircles. The Voronoi polygons
associated with these triangles are shown by dashed lines in this figure.
Further, each of the original triangles may be subdivided into two or
three isosceles triangles by connecting the triangle circumcenters with the

triangle vertices as shown by cross-hatched lines for one section of the
triangles.

It is apparent that the Delaunay triangles and the Voronoi polygons
formed in this way are locally orthogonal: each triangle side is
perpendicular to the corresponding Voronoi polygon edge. In addition,
two complete but independent sets of modal variables may be defined on
this figure: one -- the primal set of variables - are located at the
vertices of the Delaunay triangles; the other -- the complementary set of
variables -- are located at the vertices of the Voronoi polygons.

By adopting the local x-y coordinate system as shown in Figure 1(a)
and by employing the piecewise linear approximation functions reported
in Reference 7, it can be shown that Equation (1) reduces to a one-
dimensional equation in either the primal or in the dual sets of variables

No%p/0y%) = —(1/2)e, (4)
No%¢/8z%) = —(1/2)0. (5)
Functionals

On the local coordinate system shown in Figure 1(a), nodes ¢ and j are
located on the boundary between the regions 1 and 2. This means that
the derivative d¢/dy is common to both regions 1 and 2 in Figure 1(a).
Thereby, the functional for (2) and (4) is written as

F6) = [Nos/outdsdy ~ [ godedy (6)
where the integrals are evaluated over the hatched regions in Figure 1(a).
On the other hand, nodes k¥ and ! are located on the x-axis in Figure

1(a). In this case, the derivative \(8¢/9 x) is common to both regions 1
and 2. This yields a complementary functional G(¢) for (3) and (5)

6(¢) = —[ WNCos/oa axdy + [ipdady (7)

where ;&denotes the prescribed value of potential ¢ at nodes k¥ and ! and
the integrals are again evaluated over the hatched regions in Figure 1(a).

Combining (6} with (7) leads to the hybrid functional H{¢)

H{¢) = (1/2)[F¢) + G(4)] (8)

Boundness

To show that the functional F(¢) in {(6) reaches a minimum at the true
solution of (4), let ¢ denote this true solution, and let '¢’p be some

differentiable function that is non-zero in the hatched regions in Figure
1(a) and vanishes at the prescribed boundary nodes. The approximate
functional F(¢+e¢p) is then written as
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Fo+es,) = Re) + < [xo0/ou)04, /o) (9

— 2
Y, oldzdy + e f x(a%/ay)? dzdy
where € is a numerical parameter. Extremizing (9) results in

[ 12080008 00) — v, eldsdy (10

=2f)\qpp(agb/8y)d&:—/¢p[2)\(32¢/8y2)+a]dmdy = (

Since the last term on the right side of (9) is always positive, a ‘minim'um
is reached when the parameter ¢ is zero. In other words, F{¢) in (6) is a

primal functional.

Similarly, by means of (7), the approximate functional G(p+ey) is

written as

— ¢, oldzdy — ¢ f)\(é‘wc/aa:fd:cdy
where v, is some differentiable function that is non-zero in the hatched

regions in Figure 1(a) and vanishes at the prescribed boundary nodes.
Extremizing (11) results in

[ u(os/o2\09 /0214, oldmdy—2 [No(06/0s)y  (12)
— / ¥ [2X(8%¢/02°)+-0]dzdy==0

Since the last term on the right side of (11} is always negative, the
functional G(¢+e% ) in (11) will be a maximum when the parameter ¢ is

zero. Thus G(¢) in (7) is a complementary functional. It follows that
minimizing (9) yields the upper bound solutions, and maximizing (11)
yields the lower bound solutions.® We therefore conclude that the
approximate solutions q&p obtained by using (9) are greater than the exact

solution ¢ but that the approximate solutions 9, obtained by using (11)
are smaller than the exact solution ¢

6, = ¢ + ev, (13)
b = ¢ — ew, (14)
Here 'qbl and ¢, are differentiable functions that are non-zero in the

hatched regions in Figure 1(a) and vanish at the prescribed boundary
nodes.

By means of (6)-(14), it follows that the hybrid functional is bounded

F(qbp] > HYBRID FUNCTIONAL = G(qbc) (15)

Convergence

When (13) and (14) are introduced into (8) and (7) respectively, the
extremization of the hybrid functional (8) yields

H= lm  (1/20[<F($,)-F($)>+<G(6)-G(8)>]= 0 (16)

Equation (16) results in the following relationships:

[wte8/09az+ [ 306 /0z)ay—0, (17)

f BN0%6 /0P + (0% /85%) +a] dxdy=0. (18)

Equations (17) and (18) prove that extremizing the hybrid functional
provides correct solutions to Equation (1).

The convergence of the numerical solution is accelerated by averaging
the approximate solutions in (13) and (14). For example, the mid-side
potential ¢ in Figure 1(a) is given by

5, = (1/26; + 4. (19)
The average potential ¢, in (19) has higher accuracy than either ¢, or ¢,
since the nodal potential éi 1s determined from the primal functional
while the potential ¢, is determined from the complementary functional.
Provided that ¢, ~21),, the term €3 in (13) and (14) is therefore canceled
by using the interpolation process in (19).

G(b+ep) = G4) — g/ [27\(96/92)(0%,/9x) (11)

Meote, + 22cote,
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Figure 1. (a) General discretization showing the Delaunay
triangles and the associated Voronoi polygons. The
nodes for the primal variables are located at the
triangle  vertices, while the nodes for the
complementary  variables are located at the
circumcenters of the Delaunay triangles. (b) The
primal network between the nodes ¢ and 7 in the
subregion of Figure 1(a). (¢} The complementary
network between the nodes & and [ in the subregion of
Figure 1(a).

Node Equations

Introducing a simple linear Lagrange interpolation between nodes ¢ and

j in Figure 1(a) provides the following trial function for the primal
functional

6,=(1/2)(6 +6 J+(6,~4 )(u/a). (20)

Note that this approximation function satisfies the boundary conditions

(2).

Substituting (20) into (6) and minimizing the result yields discretized
forms For example, for node ¢ in Figure 1(a) the result is

OF(6.)/06 —[(ny/2)cotd +(r,/2)cot0)(4 4 ) 1)
—(1/4)(abo+aco,) = O.

Equations for the other nodes in the primal system are obtained in the
same way. The full set of node equations gives the primal network
shown in Figure 1{(b). It is interesting to note that the network
parameters in Figure 1{b) coincide with those produced by the first order

finite element method.?



The trial function ¢ _ for complementary functional must satisfy

boundary condition (3). In order to satisfy this condition, we must
employ two different trial functions given by

=7, /8)¢, (Ao /)b, ]/ 1> /) +(Ay/c)] (22a)
+{(Ay/be)(d,— =/ [(8,/0)+(Ny/¢)]

¢ =[(7/8)8, /N /I /8RN  ¢)] (22b)
+H{(x,/be)(é,~o N/ [, /8)+(hg el

Equations (22a) and (22b) apply within the regions 1 and 2, respectively,
in Figure 1{(a). Introducing (22a) and (22b) into {7) and maximizing the
result yields the discretized form. For example, for node k in Figure 1{a)
the result is

0G(4,)/0,=($,—¢,)/[(1/2X,)eotd, (23)

+(1/2X,)cotd,|+{ab/2)o, =0.

Equations for the other nodes in the complementary system are
obtained in the same way. The full set of node equations gives the
complementary network shown in Figure 1{c).

An Example

To illustrate the method, we applied it to the calculation of the
magnetic field in ferromagnetic material of square cross-section. This
example has been used by Hammond and Tsiboukis for demonstrating
the dual finite element method.”

By symmetry, only part of the square must be computed as shown in
Figure 2. In this example, ¢,A and ¢ of Equation (1) correspond to the
axial component of the vector potential, inverse permeability, and
current density, respectively.

Figure 3 shows the results of computations obtained by the new
method, as well as results obtained by using the first order finite element
method. As is evident from Figure 3, the use of either the primal or the
complementary network system is inferior to the conventional first order
finite element method. However, the hybrid method based on averaging
the primal and complementary systems 1is far superior to the
conventional first order finite element method and provides nearly an

order of magnitude improvement in accuracy for a given number of
nodes.

Figure 4 provides a comparison of the equipotential lines obtained by
means of the hybrid method and by the first order finite element method
for a small mesh (N==10). While the solution generated by the finite
element method departs significantly from the analytical solution with
this coarse mesh, the solution produced by the hybrid method is quite
accurate. Thus the local orthogonal discretization procedure provides
excellent potential distributions even with extremely small meshes.

CONCLUSIONS

A new method of computing two dimensional magnetic fields has been
developed. The method is based on the geometrical duality of Delaunay
triangles and Voronoi polygons. Since these geometric structures are
locally orthogonal, they provide complementary solutions without the
complications engendered by dual energy-dual potential methods.

To obtain solutions of similar accuracy in an example problem, the new
method required about one-tenth of the nodes and considerably less
computer time than the conventional first order finite element method.
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Figure 2. A highly permeable conductor of square cross-section
analyzed in [2].
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Figure 3. A comparison of the errors in solving the problem in

Figure 2 expressed in terms of the absolute values of
error in the functionals.
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Figure 4. Equipotential lines for the problem in Figure 2. (a)

The dotted lines were produced by the local orthogonal
discretization method. (b) The dotted lines were
produced by the conventional first order finite element
method.



