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Abstract - Currently available CAD systems on material, the hysteresis becomes - strong creating
electromagnetics use the technique of shifting known  difficulty in modeliing the demagnetization curve.

demagnetization curve of the second quadrant to the  The demagnetization curve can be well approximated
origin and introduce a suitable current carrying coil by @ shifted B-H curve passing through the origin

for modelling permanent magnets. This paper provides  adjusted by a suitable current carrying coil. This
the result of a validity test obtained by simulating relation resembles to that of Frollich-Kenelly's
a rotating magnetobase. The behavior of the torque relation (2].
with the rotation of a permanent magnet has been In this paper, the validity of modelling permanent -
calculated wusing this technique of shifting and magnet using the above concept has been confirmed by
compared with the experimental results. Agreement to a concrete example of rotating magnetobase [3]. ‘
a considerable extent confirms the validity of this
technique. HODELLING OF PERMANENT MAGNETS

INTRODUCTION Wany common devices such as motors, generators, loud

speakers, telephone recievers etc., requires strong
To optimize the performance of electromagnetic and constant magnetic field for their operations and

devices, a detailed knowledge of the field distribution ~ as such, use permanent magnets. It is extremely
is absolutely necessary. The basic governing equation difficult to model the actual physical representation
of these devices are represented by Maxwell's egua- of permanent magnet wusing the hysteretic phenomenon in
tions. The complexity arising out of the geometry cases of minor loops. Usually, the characteristics
and non-linear properties of the magnetic material  Of hard magnetic materials s handled in a very re-
makes it difficult to find the exact solution from  Strictive way. The section in the second quadrant

these partial differential equations, whereas numerical ~ Of the major hysteresis loop (Fig.1),  known as de-
approximation methods, such as, finite difference magnetization curve is wused for characterization of

method, finite element method etc.. allow a conven- magnetic materials
ient solution, 0f the numerical analysis methods 4.2% 10! ; . f
available for solving electromagnetic field equations, R~
the finite element method has achieved preeminence.
In fact, almost every magnetic analysis package now T
available wuses the finite element method for its L e
mathematical operation. B(T] L T B
Model ling of magnetic material iS a very important R . [
task in the magnetic field analysis. Magnetic 1 . s
saturation, demagnetization curves as well as other
characteristics are wused for modelling magnetic S
materials. Numerous ways of modelling maghetic - T S L S
material curve bhave been devised [1]. e e e e e e e e
In case of soft magnetic materials the hysteresis 0.0 | N 4
is weak and, thus, the magnetic property of material -2 31% 105 —1.15% 105 5,31 % 102
is easily modelled by a piecewise linear relationship H[A/n]
between B and H. However, in case of hard magnetic

Fig. 1. Typical demagnetization curve.
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The demagnetization
formufated as [1}]

curve can he mathematically

H+He

- —_— 1)
8 a+h(h+He) (

This resembies to Froilich Kenelly's relation, where
B, H and He are the flux density, field intensity and
coercive field, respectively. The coefficients a and b
in (1) are obtained as follows

let, H—oo so that, B—Bs where Bs denotes the
magnetic flux density at saluration. Then,
H+He
B = lim ———
He b arb(H+He)
= fim ! L)
H— o0 a b T b
+
H+He
1 v
or b= = .
85 (2)

Similarly, letting H—0, we get B-, where Br denotes
the residual or remenance flux density and

B = lim H+He L
" H—0 arb(H+He)  avhHe’
or a - M(l-l). (3)

Br Bs

Substituting values of a and b from equations (3) and
(2) respectively into (1), we get

i H+He C Hehe
) 1 1.1 Ho He
Help g g (he) gy
= g (HeHe), (4)

where 1 denotes a permeability.

Equation (4) allows us to express the demagnetization
curve of first and second quadrant in a shifted curve
passing through the origin and the current density due
to the coercive field as shown in Fig.2.

FINITE ELEMENT FORMULATION

With the above representation the permanent magnetic
material, in other words, the hard material can now
be considered as consisting of a soft material and the
current density equivalent to that of coercive field

Rearranging equation (4), we obtain

4.2x 107! T T T
B[T]
0.0 — } f
~2.31%10°  -1.15% 105 5.31% 102
H[A/m]

Yres
T ]

4.2 101 T
-B[T] ’
0.0 } ——— -
0.0 1.15% 105 2.31x 105
H[A/m]
Fig. 2. Representation of demagnetization curve

in the form of a shifted curve.

ioe Lhefie, ’ (5)
i
and thus,
l_ - -
VX—=B=VXHtVXHe, (6)
v

Denoting a vector potential A and substituting B=V X A
in (6) we get,

Ix LT XA = I, ' (1)
7.

where the source current demnsity 3 and equivalent
current density Jm are
VXH = J, S (8)
VX He = Jn. ' (9)

When we wuse a piecewise linear approximation for the

permeability «, then a functional F(A) for equation
(7) can he formally written as



1.1 - - - - -
FlA) = = £ = (V xA)2ds-§ J- Ads- § Jn - Ads. (10)
2 SU s 3
Characteristics of the permanent magnet can be found
in the rightmost term of equation (10). Therefore,
let us examine this term.
{Jn - Ads = 7 xHe - Ads. (1)
When we apply the integral (o some small part of

permanent magnet shown in Fig. 3, then
can be rewritten by

equation (11)

dHe dHe - dte -
- +k - Adxdy = § k— - Adxdy, 12)
33(!02 ax) y i T y {
where we assume that the y divectional coercive field

He varies as a function of x and remains constant for
Z . i and k denote the unit vectors in the direction of
x and z axis respectively.

Equation (12) means that the equivalent current
density Jo o in equations (7) and (9) is flowing towards
7 divection. Let the equivalent current density
Jn=dHo/3x take a constant value in a small part of
the permanent magnet. then the integration of (12) can
be carrvied oul in much the same way as the conventional
one. As a result, the current term In caused by the
equivalent current density Ja in
system of equations is reduced to

the finite element

In = He - Ly, (13)

. for the permanent magnet
the height of this magnet.

shown in Fig. 3, where Ly is

ROTATING MAGNETQOBASE

Magnetic base s
hold the positions

widely used in the industries to

of rotating objects. Since its
operation is depending on the permanent magnetic field,
therefore, it is one of the best selections as an ini-
Lial test for our problem, The magnetic base consid-
ered here ( hereafter rotating magnetobase ) (Fig. 4}
consists of two yokes, a permanent magnet and a non-
magnetic spacer positioned between the two yokes:

Flux is generated due to permanent magnet and fiows
through the yokes. However., by rotation of the
permanent magnet through a certain angle a difference
occurs in the flux in the two yokes. This causes a
change in magnetic energy in the gap between the perma-
nent  magnet and  the yokes. which in
a force at the two poles of the magnet, tending to
rotate the magnet in, vrespectively, the direction of
rotation and the direction opposite 1o it.

This paper calculates the

turn generates

torque using Haxwell
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Fig. 3. Cross-Sectional view of a magnet with

the current sheet on its surfaces
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(a) Photograph of
rotating magnetobase.
Fig. 4.

(b) Cross-sectional view of
rotating magnetobase.

stress
position

tensor corresponding to different angular

of the permanent magnet of the magnetic base.
MODELLING OF ROTATING MAGNETQBASE

Clearly,
direction.

the problem has symmetry in

Therefore, a two dimensional cross
section is sufficient to analyze the problem guite
accurately. The torque calculated at the two poles
are based on Haxwell stress tensor method which is
described as follows,

An arbitrary surface enclosing
the torgue

the axial

the object for which
needs to be calculated .is chosen. The
torque = at a point at a distance r is calculated by

o= fuo LG X2 0 (i) ds, (1)

where n is the normal vector to the surface S, H the
magnetic field and o the permeability of free space
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Fig. 7. Torque v.s angle of rotation

[4]). A mesh of 1000 triangles (Fig. 5) was formed
to analyze the problem. fig. 6 shows the flux distri-
bution corresponding to 10 degree of angle of rotation
Fig. 7 is a plot of computed ( on the basis of shifting
procedure ) and experimented results of torque at dif-
ferent angles of rotation corresponding to Ferrite

1t can be clearly seen that the computed result agree
with the experimental result,

COKCLUSION

Modelling of the permanent magnet in the finite
element analysis is not a trivial task. Complexity
arising out of the hysteretic phenomenon, in partic-
ular, are difficult to handle, However, the procedure
of shifting known demagnetization curve to the origin
and adjustment by a suitable current carrying coi
provides good approximation of the actual physical
phenomenon. In this paper a CAD package [5]. which
uses this technigue, has been used for validity test
and is observed that this technigue can well approxi-
mate the actual behavior of permanent magnet
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