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Abstract — This paper presents a novel objec—
tive function in order to design electromag-
netic devices. The finite element method tak-
ing the open boundary condition into account
is used for magnetic field computation. Com-
parison of the results obtained with the novel
objective function and the least squares shows
that the former is superior to the latter.

1 . INTRODUCTION

Designing an electromagnetic device from its
specification is reduced to solving the in-
verse problem. This work has been’ done by
experienced designers. It is very much expect-
ed that designing will be automatically car-
ried out by computers in the near future. In
order to realize 1it, various studies have
proposed designing methodologies [1-4]. In the
previous studies, the least square evaluation
has been widely used as the objective func-

tion. This method corresponds to minimizing
the distance between target and evaluation
vectors in the linear space.

For the purpose of analyzing the inverse

problem, the sampled pattern matching (SPM)

method in which we minimize the angle of the
two vectors has been developed [5-8]. In this
paper, we apply the SPM method using the

finite element method (FEM) on the open mag-
netic field condition to electromagnetic de-
vice designing. A simple example of magnetic
core shape design is demonstrated.

1. A NoveL OBJECTIVE FUNCTION

Electromagnetic fields can be expressed by

Ax=b, (1)
where the vectors x and b denote the field (or
potential) and 1its source distributions,

respectively. The system matrix A which is
determined by geometry and medium parameters
has some unknowns in electromagnetic device

design problems where the vector x is known as
a target value xt. Numerous studies have
devoted their efforts to determining A by
means of the least squares, i.e. minimizing
the error

er = lIlxt - xell /1l xedl, (2)

vhere the field vector xe being evaluated is
given by (1) vith trial design parameters.
In this paper, a novel objective function

y=xt" - xe / (llxell fxell), (3)

vhich we maximize is proposed for magnetic
core shape design. The magnetic field evalua-
tion based on (3) has been applied to inverse
problems in biomagnetic fields [5~7] and the
non-destructive testing [8].

The most notable difference between (2) and
(3) is as follows. The former depends on the
norm of Xe, i.e. the norm of b in (1), whereas
the latter does not, because v of (3) gives a
normalized vector element pattern matching
rate between Xt and Xe. When Xe/ | Xe |l coin-
cides with xt/ || xt{l, v becomes 1. Even if we
assume the field source vector kb where k is
an arbitrary scalar, the normalized field
vector xe/ || Xe || obtained by (1) is indepen-
dent of k. However, &r of (2) depends not only
on Xxe/ || xe || but also on k.

Let us consider the error defined by

Be = I (xe/lixell) - (xe/ M xe f) I (4

When we assume xt and Xe are n dimensional

column vectors:

xt = [xt1 xtz <++ xtn]l, (5)
Xe = [Xe1 Xe2 oo Xen]T, (6)
wve have
n
Er2 = = {xti/Nxe ll) = (xei/ |l xe I[)}2
=2 -2 : ' (M
Therefore, maximizing v of (3) is exactly
equal to minimizing the error Er of (4).

However, it is different from minimizing the

conventionally used error & of (2).
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. FEM oN THE OPEN BOUNDARY CONDITION

In order to analyze the magnetic field on
the open boundary condition, one of the au-
thors developed the strategic dual image (SDI)
method using the FEM [9,10]. The SDI method
has been generalized as field source transfor-
mations between the inside and the outside of
a finite region [11,12). In two dimensional
open magnetic field problems, the SDI method
sets a circular boundary line containing all
the field sources. This method needs only one
condition that summation of positive and nega-
tive values of all the field sources inside
the circular line must be zero. Imposing the
zero and natural boundary conditions on the
circular boundary and averaging the obtained
vector potentials at the same node give solu-
tions on the open field condition.

In the next chapter, we will use the finite
tvo dimen-
sional magnetic core shape design which is one
of the open field problems. In order to verify
the accuracy of solutions obtained with the
mesh of Fig. 1, having 580 triangles and 321
nodes, we compare the functional values ob-
tained with it and a finer mesh having 1940

triangles and 101% nodes inside the same
boundary. In the homogeneous open field, the
functional value obtained with the mesh of

Fig. 1 is 99.2% with respect to the one
obtained with the finer mesh when uniform cur-
rent density is given in the region (x=52+68,
y=0~64), which concludes that the mesh of Fig.
1 is valid for the design.

A\y
y=?2 x >
Design Region
y=64_& >
0 X
T x=68
A y=
1Lx=48x 52

Fig. 1. Finite element mesh of the SDI method.
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IV. AN ExaMPLE AND ITS DESIGN PROCESS

An example specification for magnetic core
shape design is uniform magnetic flux density
By and Bx=0 on the target surface in the two
dimensional magnetic field shown in Fig. 2.
The configuration of the DC exciting coils and
the magnetic material 1is symmetrical with
respect to the y-axis, but exciting current
flowing directions in the positive and nega-
tive x regions are opposite each other. Let us
assume that the magnetic material has the
constant relative permeability pr=500.

In optimization problems, a trajectory of

reaching a goal takes an important role, so
that various methodologies of determining it
have been proposed [1-4]. However, in this
paper, we applied a very simple algorithm to

the design in order to clarify the difference
between the SPM and least square methods. The
rectangular design region of Fig. 2 is divided
into 168(=14x12) small triangular elements as
shown in Fig. 1. We accumulate triangle ele-

ments of #r=500 on the top surface of the
initial shape of the magnetic material. The
magnetic flux densities Bx and By on the
target surface (x=0~32, y=94) are obtained

from the potential gradients in their triangu-
lar elements. As a result, the conventional
least square (CLS) error & and the SPM rate 71
are calculated by (2) and (8), respectively.
By selecting the best element giving the
maximum ¥ from the first layer, we have a new
contour surface including it. Then, we accumu-
late the next best element on the contour.
Similarly, continuing the best selection of
the elements which give the minimum & is

y
‘ Target
94|
--------- { Hr=1
Design Region !
SAR9EN 1+ Exiciting Coil
64 2
T
2 Magnetic Material
£ 1L=500
g
@ (Initial Shape)
0 %6 52 68 T %

Fig. 2. Configuration of an example.
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carried out in the CLS method. These proc-
esses are stopped at the first peaks of the Y
maximum and the & minimum, respectively.

Fig. 3 shows comparison of the target fields
designed by the SPM and CLS methods. In the
SPM method, it is not necessary to decide the
amplitude of the exciting current before com-
putation, because Yy of (3) is independent of
Il xe || . However, the amplitude must be presup-
posed in the CLS method. In this paper, vwe
assumed two amplitude values of the exciting
current for the CLS method. In the first case
(CLS"), the amplitude is adjusted and fixed to
having Bymax=100% in the initial shape. In the
second case (CLS*), it keeps the same value as
the SPM result (121% of the first -case)
obtained with the ratio |[xtll/llxell at the
final step inn the SPM design process. The
field errors, defined by (2), in the initial
and designed shapes (Fig. 4) are listed in
Table 1. The SPM method provided the best
result among them.

From the results shown in Fig. 3, it is ob-
served that the uniformity of By is sacrificed
for reducing Bx in all the cases. However, the
SPM method gave the smallest average displace-
ment of Bx from its target Bx=0%. This result
is explained as follows. Let us consider the
error er defined by

er? = ;%; {wi (xti = xei)?}, (8)

where wi(i=1,2, -+, n) are weight coefficients
depending on i. If we obtain wi for i=1,2,---,
n by assuming er of (8) equals Er of (7), i.e.

Wi (xti-xei)2={(xti/llxt || )=(xei/ll xe |l)}2, (9)

the coefficients for Bx are much larger than
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Fig. 3. Comparison of the target fields de-

signed by different objective functions.

Table 1. RMS errors of the designed fields.

Core shape

Initial

SPM

CLS®

CLs®

RMS error [%]

27.8

9.5

9.9

8.8

(e)CLS”
Fig. 4. Initial and designed core shapes and the vector potentials.

(d)CLS®
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those for By (see Appendix) whereas they are
constant in the case of (2). As a result, the

SPM method 1laid stress on reducing Bx.
On the other hand, the SPM method gave the
smallest displacement of By from By=100%,

because the amplitude of the exciting current
has been suitably determined by the norm ratio

lxe fl /1 xe 1] .

V. CoNCLUSION

The design process using the CLS method si-
multaneously requires both medium and source
parameters in the field. This means, in the
CLS method, field source amplitude considera-
bly affects the design process and its result.

In the SPM method, medium geometry and field
source amplitude are independently evaluated.
In other words, the SPM method automatically

w” assumes the best amplitude value of the field

source for each geometry in the design proc-
ess. This feature enables us to have a simple
algorithm which needs less CPU time in the
design of electromagnetic devices.

APPENDIX

As an example of determining wi in (8), let

us assume that the two dimensional field
vector x=[Bx By]':
xt = [0 10017, (10)
xre = [1 101]7, (11)

where the differences of element values for
i=1 and 2 are the same value 1. The coeffi-
cients w1=9.80x10"°% and w2=2.40x10"° are re-
spectively obtained by (9). In this case, w1
for Bx is considerably larger than w2 for By.
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