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THREE-DIMENSIONAL ANALYSIS OF MAGNETODYNAMIC FIELDS
IN ELECTROMAGNETIC DEVICES TAKEN INTO ACCOUNT
THE DYNAMIC HYSTERESIS LOOPS

Yoshifuru Saito

Abstract - A new magnetic field equation exhibiting
dynamic hysteresis loops is proposed. Based on this
magnetic field equation, a system of two-dimensional
magnetic circuit equations taken into account the
dynamic hysteresis loops is derived by the method of
magnetic circuits. By means of magnetic power inva-
riant transformation, a system of two-dimensional
magnetic circuit equations is transformed into a sys-~
tem of three-dimensional magnetic circuit equations.
This system of three-dimensional magnetic circuit
equations is discretized in time by a finite differ-
ence method. A system of three-dimensional magnetic
circuit equations discretized in time is solved by a
simple iteration method, using a relaxation parameter.

As an example, a system of three-dimensional
magnetic circuit equations of a simple saturable
reactor is derived. Also, the numerical solutions of
dynamic hysteresis loops in a saturable reactor are
presented together with those of experimental results.

INTRODUCTION

With the development of modern computers, numeri-
cal methods became available to calculate the magnetic
fields in electromagnetic devices. Since the iron
parts in electromagnetic devices constitute the major
magnetic flux paths, the magnetization characteristic
of iron becomes of paramount importance in calculating
the magnetic fields in electromagnetic devices. The
magnetization characteristic of iron is essentially
nonlinear, and is classified into two-properties: one
is the magnetic saturation, and the other is the mag-
netic hysteresis. Particularly, in these magnetiza-
tion properties, the magnetic hysteresis plays an
important role in the magnetic field distributions in
electromagnetic devices.

The principal purpose of this paper is to derive
the simplest empirical magnetic field equation exhibi-
ting the dynamic ‘hysteresis loops, and to develop the
theory of magnetic circuits as a means of solving the
three-dimensional magnetic field problems in electro-
magnetic devices. As a concrete example, a system of
three-dimensional magnetic circuit equations of a
simple saturable reactor is derived, taking into
account the eddy currents as well as dynamic hyster-
esis loops. Also, the numerical solutions of dynamic
hysteresis loops in a satuarable reactor are presented
together with those of experimental results.

MAGNETIC FIELD EQUATION EXHIBITING
THE DYNAMIC HYSTERESIS LOOPS

Figure 1l(a) shows a typical magnetic hysteresis
loop. When we consider an arbitrary point (H;,Bz) in
Fig. 1(a), then it is possible to consider that the
magnetic field intensity Hp is composed of two magnet-
ic field intensities H; and Hg, that is

H =H +H . n
a [N s
The relationship between the magnetic field in-
tensity Hy and magnetic flux density By is assumed to

take the following form:

Hu = (l/u)Ba, (2)
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Fig. 1. Dynamic hysteresis model.

where p denotes the magnetic permeability of iron.

When the permeability p is introduced into (2) as
a function of the magnetic field intensity H, or mag-
netic flux density B,, then (2) represents the magnetic
saturation property of iron. Therefore, the remaining
term Hg has to represent the dynamic hysteresis proper-
ty. Therefore, at least, the magnetic field intensity
Hg has to satisfy the following conditions: (1) when
the magnetic flux density B is increasing from -Bpy to
+Bp, then Hg must take the positive values, (2) when
the magnetic flux density B 1is decreasing from +By to
-By. then Hg must take the negative values, (3) when
the magnetic flux density B reaches to the positive or
negative maximum value *Bp, then Hg must die out, and
(4) the area bounded by the hysteresis loop must be
equivalent to the hysteresis loss energy per unit
volume, Figure 1(b) shows the relationship between
the magnetic field intensity H and time derivative of
magnetic flux density B. By considering the above
conditions (1)-(4) and Figs. 1(a),1l(b), it is possible
to assume that the magnetic field intensity Hg depends
on the rate of change of magnetic flux density B, in
time t, that is

H = (1/s)(dB_/d4t), : (3)
s a

where the hysteresis coefficient s is introduced to
relate Hg with dB;/dt, and has the unit of ohm per
meter. The magnetic hysteresis loss power Py (watt
per volume) at a point (H,,B,) in Fig. 1(a) is given
by

_ . @&, _ 1 dB 2
P = Hs(EEa) B (s’(EE“’ : ’ (4)

By means of (1)-(3), the magnetic field equation’
exhibiting the dynamic hysteresis loops is assumed to
take the following form:
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1 1.dB
H = (E)B + (;05; . (5)

(5) exhibits many typical hysteresis characters
such as the presence of minor loops and increase in
area bounded by the loop with frequency, because (5)
is essentially similar in form to those of Charap and
Chua [1-3].

When we consider the peak point (Hp,By) in Fig.
1(a), then the permeability up can be calculated by
Um=Bm/Hm, because the time derivative of magnetic flux
density B in Fig. 1(b) is reduced to zero at the point
(HpsBp) in Fig. 1(a). Also, the hysteresis coeffi-~
cient s, can be calculated by sc=(dBc/dt)/Hc, because
the magnetic flux density B in Fig. 1l(a) is reduced to
zero at the point (Hg,dBg/dt) in Fig. 1(b). Similarly,
the permeabilities and hysteresis coefficients in the
other points can be obtained, and their results con-
struct the magnetization curves as shown in Fig. 1l(c).

THEORY OF MAGNETIC CIRCUITS IN TWO-DIMENSIONAL FIELDS

Consider the region bounded by the contour abcda
in Fig. 2(a), it is possible to write the fundamental
relation between the magnetic field intensity H and
current density J7 as

fHALl = le.nda v (6)
abcda SEEEHE

where dl denotes the infinitesimally small distance
along the contour abcda, da is the infinitesimally
small area, Szpcda 1s the surface area bounded by the
contour abcda, and n is the unit normal vector on the
infinitesimally small area da. Moreover, subscripts
1,2,3,4,5 refer to the mesh points in Fig. 2(a). The
right-hand term in (6) is equivalent to the current i
flowing through the surface Sgjpcgz. viz.

le.nda = il . (7

saEcHa

By considering (5),(6), the left-hand term in (6)
is rewritten by

mal = rihe + HBa . (@)
U s’ dt
abcda abcda

In order to apply the method of magnetic circuits
to the magnetic field regions in Fig. 2{(a), it is
assumed that the current ij; in (7) is not uniformly
distributed on the surface Szpcdar but concentrated on
the conductor with infinitesimally small cross-
sectional area located at the mesh point of the sur-
face Sapcda-. Similarly, it is assumed that the
currents in the other regions in Fig. 2(a) are concen-
trated on the conductors with infinitesimally small
cross-sectional area located at each of their mesh
points. Due to the nonlinear magnetization charac-
teristic of iron, it is assumed that the permeability
u as well as hysteresis coefficient s in (8) may take
different values with respect to the positions. More-
over, it is assumed that the magnetic field intensity
H and magnetic flux density B along the contour abcda
in Fig. 2(a) may take different values, but the mag-
netic flux which takes the paths along the contours
ab,bc,cd,da may take a constant value. With these
assumptions, the magnetic fields in Fig. 2(a) may be
calculated for a modified form in the regions as shown
in Fig. 2(b). 1In Fig. 2(b), let ¢7,¢,,93:¢4,95 denote
the loop magnetic fluxes, and let e; denote the exter-
nally impressed voltage in the direction of z-axis in
Fig. 2(a), then the current i; in (7) and the right-
hand term in (8) are rewitten by

il = (l/rl)[e1 - (d/dt)¢1] ' (9)
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f[(u)B + ( ) ]dl =
abcda k=2

L[R ,+ S

1t Sk dt)1[d> ¢ + (10)

where ry is the electric resistance defined in the
direction of z-axis; Rj) and Sji are respectively the
magnetic resistance and hysteresis parameter defined
along the contour abcda as shown in Fig. 2(c). The
magnetic resistance calculations with various geomet-
rical shapes are described in [4]. By considering (10),
it is found that the parameter which depends on the
geometrical shape is common to Rjx and Sjk. Therefore,
the hysteresis parameters with various geometrical
shapes are calculated in much the same way as the mag-
netic resistance. Also, the electric resistance r
in (9) is calculated in much the same way as the mag-
netic resistance, because the definition of electric
resistance with respect to the geometrical shape is
similar to the definition of magnetic resistance [4,5].
By means of (9),(10), the two-dimensional magnetic
circuit equation is formally written by

5

Z[R1 + S dt)][¢ ¢ 1 . D

1 a
(=)le,- (z9¢,]1 =
rl 1 dt’ "1 =

The Appendix shows that (11) is one of the finite
difference equations.

X
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Fig. 2. Two-dimensional fields.

For computational convenience, it is preferable
to assume that the region which encloses each of the
mesh points in Fig. 2(b) may have the distinct perme-
ability and hysteresis coefficient. Thereby, it is
assumed that the magnetic fields in Fig. 2(a) may be
calculated from the magnetic circuits shown in Fig.2(d)
. Let F3p, denote the magnetomotive force between the
node a and b in Fig. 2(d), then it is possible to write
the following relation:

s @)1+ L s o5 @1, 12)

1
+ = =
¢ ¢ R ab A'dt RB ab "B 'dt

17¢, =
where ¢7,¢, are shown in Fig. 2(c):¢p,¢p,Ry,Rg,SpsSp
are shown in Fig. 2(d). When the time derivatives
of diverted magnetic fluxes ¢p,¢p are given by
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as R
A ___ B
at Ryt Ry dt) (o — ¢ (13)
as R
B a_d
— = ()4, - 6.] . (14)
dat RA+ RB dat 1 2

then the magnetic impedance between the node a and b in
Fig. 2(c) can be represented in terms of the circuit
parameters in Fig. 2(d) as

a,_ ‘a% T )s+(R 1% 1E
_RA+RB R+RB R,*R.° BT 4t '(15)
The other circuit parameters in Fig. 2(¢) can be

similarly represented in terms of the circuit para-

meters in Fig. 2(d).

When we consider that the diverted magnetic flux
depends only the magnetic resistance Rp,Rg in Fig. 2(d4
), then the magnetic field energy w, stored in the
magnetic re51stance Ry is given as wp= (1/2)RA[RB(¢1 b,
)Y/ (R +RB)] Similarly, the magnetic field energies
wc,wG,wE stored in the magnetic resistances Ros/Rg/Rp
in Fig. 2(d) can be obtained in much the same way as
Wp. By adding these magnetic field energies, the
total magnetic field energy Yibcda stored in the re-
gion taking the permeability u; in Fig. 2(b) is given
by

R2*S124G¢

1 2
Yibcda wA+ wC+ wE+ Ye (EEIQB vabcda ! (16)
where V pcga denotes the volume of the region taking
the permeability u; and hysteresis coefficient s; in
Fig. 2(b). By means of (16), it is possible to deter-
mine the permeability u; as a function of the magnetic
field intensity (B/Ul)=7ZWEEEEA/(U1VESEEE)'

By means of (4),(13), the hysteresis power dissi-
pated in the hysteresis paramete5 Sp is given as pp=(1
/2)8,T[Ry/ (Ry+Rp) 1 (d/dt) (¢4-6,)3.  Similarly, the
hystere51s powers pc,pE,pG dissipated in the hyster-
esis parameters ScsSgsSg in Fig. 2(d) can be obtained
in much the same way as pp. Thereby, the hysteresis
coefficient s; can be obtained as a function of the
magnetic field intensity (1/s;) (dB/dt) =¢2p55535/(sl
Vibcda’ Where Papoda PatPctPEtPg-

THEORY OF MAGNETIC CIRCUITS IN THREE-DIMENSIONAL FIELDS

Most electromagnetic devices consist of conduc-
ting wires around an iron core, in order to minimize
the magnetic field energy stored in the iron core, the
eddy currents in the iron core flow in a direction
opposite to the exciting current. The magnetic flux
which passes through the path parallel to the current-
carrying coil can be neglected, therefore, it is pref-
erable to consider the solid element as shown in Fig.
3(a). The permeability and hysteresis coefficient of
this solid elememt are determined from the magnetic
field intensities in the radial and in the tangential
directions. Also, the central portion of the solid
element in Fig. 3(a) is one of the solid elements; the
permeability and hysteresis coefficient of this element
become the functions of magnetic field intensities in
the tangential direction, because the magnetic resist-
ance in the radial direction reaches an infinitely
large value.

For simplicity, it is preferable to consider a
concrete example. One of the simplest examples of
electromagnetic devices is the saturable reactor as
shown in Fig. 3(b). This saturable reactor is divided
into Mg parts in the radial direction and Mp parts in
the tangential direction, taking into account the
region containing air. Thereby, the magnetic field
calculation of the saturable reactor is reduced to
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(b) SATURABLE REACTOR AND ITS MAGNETIC CIRCUITS.

Fig. 3. Solid element and saturable reactor.

evaluate the M(=MpxMg) loop magnetic fluxes. Moreover,
it is assumed that each of the exciting and search
coils takes a distinct solid element which is similar
in shape to the solid element shown in Fig. 3(a), and
that no magnetic flux flows out of the boundary re-
gions. The system of magnetic circuit equations is
preferably expressed in matrix notation involving the
externally impressed magnetomotive force vector F[t],
magnetic impedance matrix Z[t] and magnetic flux vector
olt]. After introducing the relationship between the
number of turns of coil and magnetic flux linkage into
(11), and rearranging, the system of magnetic circuit
equations is expressed by

Flt] = z(t]e([t] , (17)

where each of the matrices including the notation [t]
is composed of the time varying elements. For nota-
tional convenience, let the subscript 1 refer to the
quantities related to the exciting coil. The magnetic
flux vector ¢[t] which is a column matrix of order M is
written by
olt] = [4.,6., - 01", (18)
172 M
where the superscript T denotes the transpose of the
matrix. The externally impressed magnetomotive force
vector F[t] involves the externally impressed voltage
vector V[t], electric conductance matrix G and winding
matrix W, that is
Flt] = WGv([t] (19)
The externally impressed voltage vector V[t] is a
column matrix of order M, viz.

vitl = fe, O, .. , 0T, (20)

where ey denotes the externally impressed voltage. The
electric conductance matrix G and winding matrix W are
the diagonal matrices of order M, that is

G = diag. (21)

=
1]

aiag. N, 1, .., 1], (22)




where rj,rp,ry are respectively the electric resist-
ances related to the loop magnetic fluxes ¢3,45,6m7 N1
denotes the number of turns of the exciting coil.

The magnetic impedance matrix Z[t] consists of the
magnetic resistance matrix R[t], hysteresis parameter
matrix S[t], electric conductance matrix G and winding
matrix W, viz.

z[t] = R[t] + (S[t]l+ WGW) (d/4t) , (23)
where
Rj; "Ry, - -
R . .
R[] = 22 , (24)
SYMMETRIC RMM
$11 ~S12
sie] = Sy o, (25)
SYMMETRIC S

where the elements Ryj,Rjp,Ryy in (24) and S77,S15,Sum
in (25) are easily obtained from the magnetic circuits
in Fig. 3(b).

When we compare the magnetic circuits in Fig. 3(b)
with (17)-(25), then it is found that the loop magnetic
flux ¢py; [shown by dotted line in Fig. 3(b)] must be
taken into account in the calculation of magnetic
fluxes to satisfy the condition of minimum number of
network equations [6]. Since the loop magnetic flux
¢m+1 in Fig. 3(b) is physically flowing toward the
tangential direction on the center of the radial direc-
tion, we can find the following relationship:

ole] = c oCrt] , (26)

where superscript c refers to the three-dimensional
quantities, and CcT is the magnetic flux connection
matrix which is a rectangular matrix with M rows and
M+l columns, that is

1 0 o0 . -1
o1 0o . -1
(27)

o o0 o0 . -1
By means of the magnetic power invariant trans-
formation method [5], the system of three-dimensional
magnetic circuit equations is derived by
c c c
F [t] = CF[t) = 2 [t]® [t] , (28)

where

21 = czieic” = Ere) + Cre1+e Go L 29)

NUMERICAL METHOD OF SOLUTION
In order to discretize the time differential terms
in (28), a finite difference method is applied to (28),
that is
Flal = R°lal{ad® [t+at]+(1-a) @ [€] }+{cC+
s%lal ¥ (1/a6) (2% [e+at]1-0% 21} , (30)

where
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Fla]l = aFC[t+At]+(1-a)FC[t] ,
R°{a] = orC [t+At]+(1-a)FC[e] , (31)
s%la] = asClt+At]+(1-0)s°[t] ,

The parameter a in (30),(31l) can be chosen arbi-
trarily e.g. a=0, a=1 yield forward, backward differ-
ences; and At denotes the stepwidth in time.

To evaluate the magnetic flux vector ¢ [t+At] from
(30), an iteration method using a relaxation parameter
w is applied to (30). As shown in Fig. 4, the relax-
ation parameter w is sequentially determined in every
complete iteration.

START
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Fig. 4. Flow chart of the iteration method.

The relaxation parameter w is determined by the
following assumptions:

1 i‘ﬂ< 2, (32)

e = f(w) , (33)
where f(w) means that the mean percentage error ¢ for
entire solutions is a function of w. When the relax-
ation parameter w+Aw which satisfies the condition of
(32) is selected to the most suitable value, then the
error e=f (w+Aw) reduces to

f(wtdw) = fw)+ A (34)

wlar
€ |+
]
o

The term 9f/3w in (34) is replaced by the divided
difference, therefore, it is possible to determine the
most suitable relaxation parameter in every complete
jiteration [4].

NUMERICAL SOLUTIONS

The theory of magnetic circuits is applicable to
the magnetic field calculations of all electromagnetic
devices. In order to demonstrate the dynamic hyster-
esis loops as well as eddy currents in an iron core,
this paper examines the magnetic fields of a simple
saturable reactor as an example.

Figure 5 shows the magnetization curves used in
the calculations. In carrying out the magnetic field
computations of the saturable reactor, the magnetiza-
tion curves of iron are introduced by the linear inter-
polations.

First, the parameter o and At in (30),(31) are
respectively determined as a=0.5 and At<O0,25(msec) by
the numerical tests when the convergencg'and accuracy
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Fig. 5. Magnetization curves used in the calculations.

Table 1. Various constants used in the calculations.

Number of Subdivisions in Radial Direction 6
Number of Subdivisions in Tangential Direction 8
Limit of Discrepancy 0.1 Percent

Inner Radius of Iron Core 0.04 [m]
Outer Radius of Iron Core 0.05 [m}
Thickness of Iron Core 0.01 [m]
Thickness of Exciting and Search Coils 0.002 [m]
Thickness of the Region Containg Air 0.05 [m]

Number of Turns of Exciting Coil, [ 3-D Model 400
1-D Model 900
Number of Turns of Search Coil, [ 3-D Model 200
1-D Model 900

Electric Resistance of Excitirng Coil,
Laminated Core 5.57 [9]
3-D Modell o 1ia core 4.91 (9]
1-D Model 6.30 [9Q]

Conductivity of Iron Core 1/20.6 [1/ufcm]
All the initial magnetic fluxes and currents are set
to zero

of the solutions are taken into account.

Second, in order to check the accuracy of the mag-
netization curves of Fig. 5, comparisons of the experi-
mental and computational results are carried out for
the one~dimensional model. When we assume that the
region containing air is divided into Mg parts in the
radial direction while the region containing iron is
not divided in the radial direction, and that the loop
magnetic fluxes which are flowing through the path con-
taining air can be neglected, then the magnetic cir-
cuits shown in Fig. 3(b) is reduced to the one-dimen-
sional model. The magnetization curves of Fig. 5 were
measured from this one-dimensional model. The iron
core of this one-dimensional model was constructed
from laminated steels to suppress the eddy currents.
Also, the exciting and search coils of this model were
alternatively arranged to reduce the leakage magnetic
fluxes from an iron core. As shown in Fig. 6, fairly
good agreements between the experimental and computa-
tional results are obtained under the steady state as
well as transient state conditions.

Third, comparisons of the experimental and computa-
tional results were made for the three-dimensional
model with laminated core. These results are shown in
Fig. 7. Since the experimental model which produced
the results in Fig. 7 was constructed from laminated
steels, the experimental model did not rigorously
correspond to the computational model. For example,
the cross-sectional area of the experimentally used
iron core is about 10 percent greater than those of the
iron core used in the calculations. This means that
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-120

Fig. 6. One-dimensional model.

the magnetic fluxes obtained from the experimental
model may take the greater values when compared with
those of computed values. Moreover, the laminated
core of the experimental model essentially makes the
magnetization characteristics of iron anisotropic in
direction, but it is assumed that the magnetization
characteristics of iron used in the calculations are
the isotropic properties. Therefore, the discrepacies
between the experimental and computational results in
Fig. 7 are not necessarily small values compared with
those of Fig. 6.

Finally, comparisons of the experimental and compu-~
tational results were made for the three-~-dimensional
model with solid iron core. Since the experimental
model in this case rigorously corresponds to the compu-
tational model, as shown in Fig. 8, fairly good agree-
ments between the experimental and computational re-
sults are obtained.

wWhen we consider the results in Figs. (7),(8), then
it is obvious that the dynamic hysteresis loops are
considerably dominated by the eddy currents.

CONCLUSION

As shown above, in this paper, a new magnetic field
equation exhibiting the dynamic hysteresis loops has
been proposed. As an example, the three-dimensional
dynamic hysteresis loops in a simple saturable reactor
has been clarified. The operation count required for
the results in Fig. 8(b) was about 5 minutes on the
computer ACOS-6/SYSTEM 700 at the Computer Center of
Hoseil University.
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Fig. 7. Three-dimensional model with laminated core.

SEARCH COIL B

SEARCH COIL C

FLUX x10 °[wb]

CURRENT
& g

4 1
1.5
{a}

e="2VSIN(27£t)
v=10.0([V}
—-—=v=7.5 [V]
----- v=5.0 (V]
f=50[Hz]

At=0. 25 [msec]

SEARCH COIL B SEARCH COIL C

COMPUTED (a STEADY STATE.

551

APPENDIX

Basic equations governing the electromagnetic
fields are generally written by

UxH = J ,
5
VXE = -(32),
3
t (n.1)
J = oE ,
UxA = B ,

where J,E,A,0 are respectively the current density,
electric field intensity, vector potential and con-
ductivity of the material. By combining (A.1l) with
(5), it is possible to obtain

1 1, 9 _ _ 3
VX{(EQVXA}+ VX{(;)(EEVXA)} = o(E, Bt) , (3.2)

where E, is the externally impressed electric field
intensity. Por simplicity, let consider the two-
dimensional rectangular coordinate system, then (A.2)
reduces to

3 (1 3A 3 (1 °A 3 1,3 .0A 9 1,3 .8A
3xiy 3%t yiy oy Bxis at'ax’ Byls 3t oy)
A
= -o{Ee Bt} , (A.3)

where A,E, are respectively z-components of the vector
potential and of the externally impressed electric
field intensity. wWith h,g denoting the mesh spacings
in x and y directions, (A.3) is replaced by the follow-
ing magnetic circuit equation

3
1
& —+ ———(——)1(¢ o) 1+ z{(——o[——— +
i=2 DD My Sy i=q4 99 Hp4

1

13 - - o(3hy . 3¢
sli(at)](¢l 9} = °‘q )ley~ 5211, (A.4)

where g denotes the unit length in the direction of z-
axis; $1=9A;i, i=1,2,3,4,5; and ej=qE,. By considering
(A.4), it is revealed that (A.4) is one of the finite
difference equations.
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Fig., 8. Three-dimensional model with solid core.
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