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Wavelet Solution of The Inverse Source Problems

Tatsuya Doi,
College of Engineering,

Abstract - Generally, the inverse source problem is reduced
into solving an ill-posed system of equations. This article
proposes a novel approach for the inverse source problem
employing the wavelet analysis. The wavelet analysis has two
distinguished abilities; one is the image data compression
ability and the other is the spectrum resolution ability of the
wave forms. Key idea is that the system matrix of the inverse
source problems is regarded as a two-dimensional image data.
The two-dimensional wavelet transform is applied to this
system matrix. Finally, we can obtain an approximate inverse
matrix of the system. A simple example demonstrates the
validity of our approach.

1. INTRODUCTION

Inverse problems are classified into two major categories,
i.e. one is the inverse parameter problem which evaluates the
medium parameters by applying the electromagnetic fields to
a target region and measuring its response; the other is the
inverse source problem which evaluates the electromagnetic
field sources from the locally measured electromagnetic
fields. Generally, most of the inverse problems are reduced
into solving the ill-posed system of equations.

Previously, we have proposed a method of solving for the
inverse problems, and successfully applied to the
biomagnetic fields as well as the nondestructive testing in
metallic materials [1,2].

In the present article, we propose a novel approach
utilizing the wavelet analysis. The wavelet analysis has been
studied for the image data compression and analyzing the
spectrum of image in informatics [3-6]. The wavelet analysis
has two- distinguished abilities; one is the image data
compression ability and the other is the spectrum resolution
ability of the wave forms. Key idea of our approach is that
the system matrix of the inverse problems is regarded as a
two-dimensional image data. The system matrix transformed
into the wavelet spectrum space is composed of the two
representative spectrums; one group has the larger absolute
value, the other has nearly zero value. After collecting the
spectrums having lager absolute value and building up the
square matrix, an inverse of the square matrix is evaluated.
Combining this local inverse matrix with the zero
rectangular matrix, we apply the inverse wavelet transform
to the resultant matrix. Thus, we have succeeded in
obtaining an approximate inverse matrix of the inverse
source problems.
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II. DISCRETE WAVELET TRANSFORM
A. One-dimensional wavelet transform

In the present article, we employ the Haar's analyzing

wavelets [3]. Let us consider a following linear
transformation.
X'=CX, M

where X is a data vector with order n; n must be a power of
2:and C is

[, ¢ O <0 0]
¢ -¢, 0 0 -0 0
0 0 ¢ ¢ - -0 0
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In equation (2), the first, third, fifth, and the other odd
rows generate the components of data convolved with the
coefficients c,,c,. This corresponds to a weighted integral
operation. On the other side, the even rows generate the
components of data convolved with the coefficients ¢,,—c, .
This corresponds to a weighted differential operation [3,5].

In order to carry out an inverse linear transformation, the
coefficients c,,c, should be determined by a relationship:

c'C=1, 3)

where / is a n-th order unit matrix and a superscript T
refers to the transpose of matrix C.
From equations (2) and (3), we have

e et =1 @

Equation (4) has two unknowns c,,c, , but we have only

€4:Cy s

one equation. To determine the coefficients generally,

a following condition is considered:
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¢, —¢ =0 (5)

()= ¢ == (©)

The pair of coefficient ¢,,c, in (6) is the Haar's
analyzing wavelets, which are the same as the Daubechies's
second order analyzing wavelets [3,4].

For simplicity, let us consider a data vector X with order
8

X=[J:X x, X, X, X X, X x,]r- @)

Applying the transform matrix C, to (7)

X=CX=[s, d s, d, 5, d, s 4d]. 8)

The elements in vector X' is sorted by using following
matrix:

1 0 0 0 0 0 0 O
0 0 1 0 0 0 0 0
00 0 0 1 0 0 0
p 0 0 0 0 0 0 10 ®
*“lo 1 0 0 0 0 0 Of
000 0 1 0 0 0 0
000 0 0 0 1 0 0
0 0 0 0 0 0 0 1]
Thus, we have
PX=RCGX=[s s s s 4 4 4 dJ. (10)

Further transformation to the elements s,,s,,s,,s, in (10)
yields
XS S Q04444 (11)

Similar transformation to S,,S,,D,, D, in (11) yields

WX=[S D QD 4ddd. (12)
The transformation matrix used in (11) and (12) are
W =(R'C'XRG), WP =(B"C"XR'C'XRC), (13)

P 0 c, 0 B 0 c, 0
P': ¢ ‘: ‘ ": 2 “= : 14
SRS R R R

Equation (12) is the finally obtained wavelet spectrum.
The elements S ,D, in (12) are called the Mother Wavelet

coefficients, and the others are called the wavelet coefficients
at each level.
Inverse wavelet transform is carried out by

X=[WITweX,

oY =[(R"C )R CONRCT,
=(RCY (R'CY(R"CY,
=CIRICHT(RY(G Y (R

(15)

B. Two-dimensional wavelet transform

The discrete wavelet transform can be extended to the two
dimensions [3]. Usually, two-dimensional wavelet transform
is applied to a square matrix. In this article, two-dimensional
wavelet transform is generalized to a rectangular matrix.
The generalized two-dimensional wavelet transform is given
by

M’ =WMW, (16)

where M'and M are the transformed (spectrum) matrix
and original matrix with order n by m, respectively.
W and W, are the wavelet transform matrices with order n
by n and m by m, respectively.

The inverse wavelet transform is carried out by the
following equation:

M=W MW, %))

. THE INVERSE SOURCE PROBLEMS
A. Key idea

key idea is that the system matrix of the inverse source
problems is regarded as one of the image data. The system
matrix as an image data is transformed into a space of
wavelet spectrum. The space of wavelet spectrum is
composed of the two representative spectrums; one group has
the larger absolute value, the other has nearly zero value.
Collecting the spectrum having larger absolute value, we
evaluate an inverse matrix of the system contracted to the
non-singular size. Thus, the inverse wavelet transform yields
an approximate inverse matrix of the system.

B. An example
An example of the inverse source problems is the

estimation of current distribution on a film conductor from
the locally measured magnetic fields. The estimation of
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current distribution on a film is reduced into solving a
following system equation

DX =Y, (18a)
or
i
dll dlz A b dlu . Hl
dan da -+ - dm 1,2 H.
. . . lil=El o ome>n, (18b)
dlll d’l2 M A dn : H”

where D,X and Y are a system matrix determined by the
Ampere's law, a current distribution vector to be estimated,
and a measured magnetic field vector, respectively. Because
of m>>n, it is difficult to determine the vector X. The
numbering of the current sources and measured magnetic
fields have an effect on the quality of the wavelet transform
{3,4]. In this paper, we employed a natural numbering.

Figure 1(a) shows a schematic diagram of the example.
Our problem is that the current distributions on the film
conductor is estimated from the locally measured magnetic
fields. Figures 1(b) and 1(c) show the exact current
distribution, and the measured magnetic fields, respectively.
Figures 1(d) shows the system matrix D determined by the
Ampere's law.

C. Approximate inverse matrix

In order to solve the system equation (18), we apply the
discrete wavelet transform to the system matrix. Namely, the
system matrix D is transformed into the wavelet spectrum
D' by

D' =W.DW!. (19)

Secondly, we take a square matrix S around the Mother
wavelet coefficient out of the entire wavelet spectrum D',
After we take an inverse of the square matrix S, this

inverse matrix S™ is embedded to the matrix Z with order
mbyn.

D, =8">1 (20)
Equation (20) means that the inverse matrix S is
embedded at the top square region of Z .

Finally, an approximate inverse matrix D, of the

system is obtained by the two-dimensional inverse wavelet
transform:

Dty = W DLW, @1
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Fig.1. (a) A schematic diagram, (b) an exact current distribution,
(c) measured magnetic fields, and (d) the system matrix D
represented as an image data.

Figures 2(a) and 2(b) show a two-dimensional wavelet
spectrum D’ of figure 1(d) and an approximate inverse
matrix D, respectively.

D. Validity of the approximate inverse matrix

Mathematical validity of the inverse matrix is generally
carried out by means of the left- and right-inverse matrix
checks. In this inverse source problem, the left-inverse
matrix check D, D is not equivalent to the right-inverse

matrix check DD},

rectangular. When the left-inverse matrix check D, D

because the system matrix is a

becomes

D,. D=1,

L .D=1, (22)
the solution vector can be uniquely determined. Where I,
is an identity matrix with order m .

When the right-inverse matrix check DD, becomes

DD, =1, 23)

The existence of solution vector can be confirmed. Where
I_ is an identity matrix with order » .

n
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(a) (b)
Fig. 2. (a) Two-dimensional wavelet spectrum D' of the system,
and (b) an approximate inverse matrix D;’”m .

(a) (b)
Fig.3. (a) The left-inverse matrix check D, D and (b) the right-

. . "
inverse matrix check DD, .

Thus, the left-inverse matrix check means the uniqueness of
solution. The left-inverse matrix check shown in figure 3(a)
is similar to the identity matrix I . This means that an
approximate solution vector could be expected. Also, the
right-inverse matrix check shown in figure 3(b) is the
identity matrix I, This means that the existence of solution

vector could be expected.

E. Wavelet solution
The current vector X in (18a) is given by

X=D. Y. (24)

Figures 4(a) and 4(b) show the estimated current
distribution on the film conductor and reproduced magnetic
fields, respectively.

Thus, we have succeeded in estimating the current
distribution from the locally measured magnetic fields.
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Fig.4. (a) The estimated current distribution on the film conductor,
and (b) the reproduced magnetic fields from the estimated currents.

IV. CONCLUSION

In the present article, we have proposed an inverse
approach employing the discrete wavelet transform. The
two-dimensional wavelet analysis is applied to the
rectangular system matrix as an image data. And the
approximate inverse matrix of the system is obtained from a
square part of the wavelet spectrum. Applying the inverse
wavelet transform to the approximate inverse matrix in the
wavelet spectrum space yields this approximate inverse
matrix in the original space. Further, we have checked up
the mathematical validity of the approximate inverse matrix.

The simple example concerning to the current estimation
from the locally measured magnetic fields has demonstrated
the validity of our approach.
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Abstract - Previously, we have proposed a method of solving
inverse problems, and successfully applied the method to
biomagnetic fields as well as the nondestructive testing in
metallic materials. In the present article, we propose a novel
inverse approach for the parameter determination problems
employing wavelet analysis. A simple example of parameter
determination demonstrates the validity of our wavelet
approach.

1.INTRODUCTION

Inverse problems are classified into two major categories,
i.e. one is the inverse parameter problem; the other is the
inverse source problem. For the inverse parameter problem,
it is possible to obtain a unique solution if the fields are
measured ideally; such as medium parameter identification
in human body employing the computed tomography (CT).
However, most of the inverse problems are generally reduced
to solving a system equation for which it is difficult to obtain
a unique solution. In order to overcome this difficulty, we
have previously proposed a method of solving the inverse
probiems, and successfully applied it to biomagnetic fields as
well as to nondestructive testing in metallic materials [1,2].

On the other hand, the wavelet analysis has been studied
for image data compression and analyzing the spectrum of
image in informatics [3-6].

In the present article, we propose a novel approach for the
inverse parameter problems employing wavelet analysis. The
key idea is that a system matrix of the inverse problems is
regarded as two-dimensional image data. The two-
dimensional wavelet transform is applied to this system
matrix. An approximate inverse matrix of the system is
obtained from the wavelet spectrum. We here consider a test
example in which the relationship between input and output
is evaluated from given input and output data. As a result,
the example demonstrates the validity of our wavelet
approach.

II. DISCRETE WAVELET TRANSFORM
A. One-dimensional wavelet transform
In the present paper, we employ Haar's analyzing

wavelets [3]. Let us consider a following linear
transformation

X'=CX, 1)

where X is a data vector with order n; n must be a power of
2;and C is

¢ ¢ O O 0 0]
¢ -¢, 0 0 0 0
0 0 ¢ ¢ 0 0
C= 0 0 ¢ -¢ (V) @)
0 0 0 0 - . ¢ ¢
0 0 0 0 - - ¢ -]

In equation (2), the first, third, fifth, and the other odd
rows generate the components of data convolved with the
coefficients c,,c,. This corresponds to a weighted integral

operation. On the other hand, the even rows generate the
components of data convolved with the coefficients ¢,,~c, .

This corresponds to a weighted differential operation [3,5].
In order to carry out an inverse transformation, the
coefficients ¢,,¢, should be determined by a relationship:

0271
C’'C=1, )
where I is a n-th order unit matrix and a superscript T
refers to the transpose of matrix C .
From equations (2) and (3), we have

G+ci=1 4)

Equation (4) has two unknowns c,,¢, , but we have only
one equation. To determine the coefficients ¢,,c, , generally,
a following conditions is considered:

c,—¢ =0. (5)

] 1
From equations (4) and (5), we have

= =L 6)
<, 72=, c, ,/2_ (

The pair of coefficient c¢,,c, in (6) is Haar's analyzing
wavelets, which are equivalent to Daubechies's second order

0018-9464/97$10.00 © 1997 1EEE


ysaitoh


T. Doi IEEE March 1997

analyzing wavelets [3,4].
For simplicity, let us consider a data vector X with order
8:
X= [x, x, X, x, X, X, X x,]r< Q)
Applying the transform matrix C, to (7) yields

X=CX=[s, d s d, s d s dJ. @®

The elements in vector X' are sorted by using the
following matrix:

T 0 0 0 0 0 0 0]
0 0 1 0 0 0 0 0
o 0 0 0 1 0 0 0
p 00 0 0 0 0 1o ©®)
*“lo 1t 0o 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
Thus, we have -
PX=PCX=[s § 5 5 d d 4 d]. (10)

Further transformation to the elements s,,s,,s,,s, in (10)
yields
PX=S S R0 4444, an

where

@ _prot B 0 |G 0
W& =(F'G'XRC), P.—{O 1.’C'— o 1| 12)

Similar transformation to S,,S,,D,,D, in (11) yields

XS DR Ddddd. 4
where
we = (P' " C, "XP;le‘XPtCa)v
(14)

P, 0 c, 0
[ C " z i
k {o IJ’ ! [o Ij

The wavelet transform of one-dimensional data with
order 8 is finally given by 3(=Log,8) steps of linear
transformation. Equation (13) is the finally obtained wavelet
spectrum. The elements S,,D, in (13) are called the Mother

Wavelet coefficients, and the others are called the wavelet
coefficients at each level.

1963

Inverse wavelet transform is carried out by

X =[O (W OX),

7Y =[(R"C,"XF' C/URCIY
=(BC)(R'CH(R"C)
= CR(C)T (B (R

(15)

B. Two-dimensional wavelet transform

The discrete wavelet transform can be extended to two
dimensions [3]. Usually, two-dimensional wavelet transform
is applied to a square matrix. In this article, two-dimensional
wavelet transform is generalized to a rectangular matnx.
The generalized two-dimensional wavelet transform is given
by

M' =W MW, (16)

where M'and M are the transformed (spectrum) matrix
and original matrix with order n by m, respectively.
W, and W, are the wavelet transform matrices with order n
by n and m by m, respectively.

The inverse wavelet transform is carried out by the
following equation:

M =W MW, (17)

II. THE INVERSE PARAMETER PROBLEMS
A. Wavelet approach

The key idea is that the system matrix is regarded as one
of the image data. The system matrix as an image data is
transformed into a space of wavelet spectrum.

Let us consider an inverse parameter problem. The system
X = CY can be modified by exchanging the elements in the

vector Y and matrix C, viz.

X=YC, (18)
where a matrix ¥ and vector C are the system matrix
composed of the elements in Y and parameter vector to be
determined, respectively. In order to solve for (18), we apply
the two-dimensional discrete wavelet transform to (18). The
system matrix Y is transformed by
Y =WYW!. (19)

From the result of (19), it is found that the spectrum
matrix can be classified into two major groups. One group


ysaitoh

ysaitoh

ysaitoh


T. Doi IEEE March 1997

1964

takes the large absolute value, and the other takes the
smaller absolute value. We take a square matrix S around
the Mother wavelet coefficient out of the entire wavelet
spectrum Y’ . Generally, the square matrix S around the
Mother wavelet coefficients have large values. After taking
of the inverse matrix of S, we embed this inverse matrix
into a zero matrix Z with order mby n.

vl =5">Z 20)

Equation (20) means that the inverse matrix S is

embedded at the top square region of Z.

The approximate inverse matrix Y.,

obtained by the two-dimensional inverse wavelet transform:

of the system is

Y. =WV W, 1)

Finally, the parameter vector of system C is given by

C= Y;,‘W X (22)
Thus, the parameter vector C can be obtained from the
known input Y and output X.

B. An example

Let us consider an example of parameter identification
problems. For this example, the current and magnetic field
distribution are known vectors, but the relationship between
them is unknown. This example is reduced to solving for the
following system equation

X =YC, (239)
or

e
x, Yy, oy, 0 o 0] c,
X, _ 0 « 0 y =y 0 - 0 C}J 23
x| L0 0 Y

-c"l.x

where C,XandY are a vector of system parameter to be

determined, an output vector, and the system matrix
composed of the input current, respectively.

Figure 1 shows an example of a paramecter identification
problem from both input currents and output magnetic field
vectors. Actually, exact parameter of the vector C in (23b)
are determined by the Ampere's law. We verify that the exact
parameter can be identified by the wavelet approach.

-
~

[ )

Q 1

™
[CIR IR

Current density [A/m?]
Magnetic field [A/m]
<

Position

(©)
Fig.1. (a) An input current vector Y, (b) an output magnetic field
vector X, and (c) the system matrix.

(@) ' (b)
Fig. 2. (a) Two-dimensional wavelet spectrum Y’ of the system,
and (b) an approximate inverse matrix Y;’m .

Figures 1(a), 1(b) and 1(c) show an input current
distribution, an output magnetic field distribution, and the
system matrix of this parameter identification problem in
(23b), respectively.

Figures 2(a) and 2(b) show a two-dimensional wavelet
spectrum Y’ of the system in figure 1(c) and an
approximate inverse matrix Y, . of the system, respectively.

Finally, the parameter vector C in (23) is given by

C=r_.X (24

Figures 3(a) and 3(b) show the determined parameter of
the system, and reproduced magnetic field distribution,
respectively. The result in 3(a) coincides with those of the
Ampere's law. Actually, the parameter of the system is
determined by the Ampere's law. Thus, we have succeeded


ysaitoh

ysaitoh


T. Doi IEEE March 1997

15

Tl2.5

2 10

=

g 7.5

2

2 s

B 2.5

=

s 10 15 20 25 30

Position
(b)

Fig.3. (a) The decided system matrix, and (b) the reproduced
magnetic field distribution by the estimation system matrix.

60

(a) (b)
Fig.4. (a) The left-inverse matrix check Y, Y and (b) the right-
inverse matrix check YY,» .

in estimating the parameter of the system from both the
input and output vectors.

C. Validity of the approximate inverse matrix

Mathematical validity of the inverse matrix is generally
carried out by means of the left- and right-inverse matrix
checks. In this inverse parameter problem, the left-inverse
matrix check Y. Y is not equivalent to the right-inverse
matrix check YY,_ ., because the system matrix is

1965

rectangular. When the left-inverse matrix check Y. Y
becomes

Y2 r=I,

Appi m

(25)

the solution vector can be uniquely determined, where I is
an identity matrix with order m.
When the right-inverse matrix check YY,, becomes

Y., =1, (26)

the existence of solution vector can be confirmed, where 1,

is an identity matrix with order » .

Thus, the left-inverse matrix check means the uniqueness
of solution. The left-inverse matrix check shown in figure
4(a) 1s similar to the identity matrix I_. This means that an

approximate solution vector could be expected. Also, the
right-inverse matrix check shown in figure 4(b) is the
identity matrix I, .This means that the existence of solution

vector could be expected.

IV. CONCLUSION

In the present paper, we have proposed a novel approach
for the inverse parameter problems employing the wavelet
analysis. The wavelet analysis is applied to the system
matrix of the inverse parameter problems. The results reveal
that our wavelet approach is possible to get an approximate
inverse matrix of the system. A simple example has
demonstrated the validity of our approach.
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