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Abstract. This paper proposes an innovative methodology of image 
processing based on the classical field theory. The key concept is that a pixel 
constituting a digital image is regarded as a kind of field potentials. 
Monochrome and color images are assumed to be scalar and vector potential 
fields, respectively. The vector operators for the image data, i.e., gradient, 
divergence and rotation, derive the image partial differential equations. 
Consequently, the static and dynamic images are represented by the Poisson 
and Helmholtz types of equations, respectively.  
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INTRODUCTION 

Differentiation of image data is widely used in order to extract the edges of target 
objects in image processing. A computer screen composed of the pixels gives a physical 
meaning to the differentiation of the image data, i.e., spatial differentiation becomes a 
gradient operation when regarding the image data as the scalar potentials. This means that the 
differentiation of the image data yields the divergent vectors. In most physical systems, these 
vectors are called the field intensities. When we apply the divergent operation to the field 
intensities, it is possible to obtain the field source densities. In other words, solving for the 
Poisson type partial differential equation to these source densities, it is possible to obtain the 
potentials. Furthermore, taking into account the time varying field potential distribution 
reduces to the Helmholtz type partial differential equation. Its solution yields the potentials 
changing with time. As modern engineering as well as physics is mostly based on this 
potential field theory, so applying the field theory to image provides great advantages in the 
processing. This consideration motivates an application of the field theory to image 
processing. 
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All of images in digital computers are the discretized quantities in numerical values, 
and also the digital images are classified into monochrome and color images. The 
monochrome image is composed of two dimensional pixel array housing numerical values. 
On the other hand, the color image can be divided into RGB color components, i.e., Red, 
Green and Blue. Namely, the color image is composed of the pixels having three primal color 
components. This leads that monochrome and color images can be regarded as scalar and 
vector potential fields, respectively. This is a principal key idea of our image processing 
methodology proposed in this paper. 

 First section describes vector operations to monochrome image. This reveals that a 
static image can be reproduced as a solution of the Poisson type partial equation. Second, the 
color image is represented in terms of vector potential fields. As a result, a color image can be 
obtained the solutions of vector Poisson equations. Finally, animation generation by the 
Helmholtz type partial differential equation is discussed. 

IMAGE PROCESSING BY FIELD THEORY 

Monochrome Image and Vector Operations 
The image processing by the field theory is started by regarding an image as potential 

field. Let a monochrome image be a scalar field U, then gradient operation to this scalar 
potential field U leads to a vector fields; 
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where x and y respectively denote the horizontal- and vertical- direction axes on the image. 
Moreover, the vectors i and j are the unit directional vectors in x- and y-axes, respectively. 
Practical gradient operation in this image processing methodology is carried out by the central 
finite difference method. Namely, a pixel representing monochrome image is assumed to be a 
scalar potential Ui ,j obtained by finite difference discretization. 
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where x∆ and y∆  denote the step-widths in x- and y- axes, respectively. Further the subscripts 
i and j in Eqn. 2 respectively refer to the positions i=1, 2,…, n in the x-axis and j=1, 2,…,m in 
the y-axis. The n and m are the resolutions in the direction of x- and y-axes, respectively. Fig. 
1 shows (a) a monochrome image, (b) its vector distribution by gradient operation and (c) the 
sketch like image as an application of the gradient operation. The vectors distribute 
orthogonally to the edges along the target in Fig. 1(a). Calculating vector magnitude in each 
of vectors yields a sketch like image without any threshold techniques. 

 Divergent operation of the vector fields changes the vector quantities into the scalar 
quantities. Consequently, obtained scalar quantities are called the source densities, because 
they cause the vector fields. Divergent operation to the image vector V is given by, 
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where Vx, Vy  are the x- and y-components of the vector V. Thus, denoting the image source 
density by σ, the static monochrome image governing equation is derived as, 
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Eqn. 4 is the Poisson equation. Practical Laplacian operator is replaced by the relevant finite 
differences. In this paper, we employ a nine-point finite difference formula: 
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where the step-widths in the direction of x- and y-axes have been assumed to be 1. Also, zero 
Dirichlet boundary condition has been assumed at the edges of screen. Fig.2 (a) shows the 
source density of Fig. 1 (a). The Laplacian operation by Eqn. 5 removes the constant and first 
order spatial derivative terms from the image data. This means the Laplacian operation is 
capable of compressing the image data quantities, while the original image could be recovered 
from this source density σ. Modifying Eqn. 5 gives a system of equations, 
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Solving Eqn. 6 with the source density as input term is possible to obtain the original image. 
Fig. 2 (b) shows the recovered image from the source density shown in Fig. 2 (a). In case of 
employing the zero Dirichlet boundary condition at the edge of screen, the recovered image is 
identical to the original one. According to the nature of the finite differentials, employing fine 
mesh system enables us to generate a higher resolution image. Fig. 2(c) shows a high 
resolution image generated from source density shown in Fig. 2(a). As shown above, a static 
image can be represented by the Poisson equation. This means that application of the field 
theory to the digital images makes it possible to develop new image processing. 

  
(a) Original image having 

128x128 pixels 
(b) Gradient operation to Fig. 1(a) (c) Sketch like image 

 
Figure 1. Image gradient operation and its application. 
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Color image 
Color image is composed of three primal color components, i.e., Red, Green and Blue. 

In such a case, a color image can be regarded as a vector potential field A having three 
orthogonal components, x, y and z. Curl curl equation of the vector potential field leads us to a 
differential equation as a governing equation,  
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where color image A and its source density J are respectively defined by, 
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The subscripts R, G and B respectively refer to Red, Green and Blue components. Moreover, i, 
j and k are the unit directional vectors in x-, y- and z-axes, respectively Let us assume a 
coulomb gauge to be satisfied as Eqn. 9, then three Poisson equations are derived as Eqn. 10 
for each color component. 
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This means color images can be independently evaluated in terms of RGB color source 
density components and parallel image processing is possible. In other words, each of color 
components can be handled in much the same speed as monochrome images.  

 

red green blue

 
(a) Original color 
image (8x8 pixels) 

(b) Source densities JR, JG and JB (c) Recovered image 
(8x8 pixels) 

Figure.3 Color image and its recovery 

   
(a) Source density having 

128x128 pixels 
(b) Recovered from Fig. 2(a) to 

128x128 pixels 
(c) Generated from Fig. 2(a) to 

256x256 pixels 
Figure 2. Image recovery from the source density field by means of the Poisson equation. 
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Animation generation by image Helmholtz equation 
When we consider the time dependent images called animation, a Helmholtz type 

governing equation can be established. The Helmholtz type governing equation consists of the 
spatial as well as time derivative terms: 
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where t, α and β are the time, the velocity and the repetitive moving speed parameters, 
respectively. The Helmholtz type equation is classified into two types. One is the diffusion 
equation when β=0, and the other is the wave equation when α=0. The former represents a 
spreading or shrinking animation, and the latter represents a vibrating or repetitive animation. 
Thereby, the image Helmholtz equation in Eqn. 11 is able to generate any types of animation. 

After applying the state variable modification to the second time derivative terms in 
Eqn. 11, discretization of the equation yields a following system of equations: 
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where S and H are the mn××2  by mn××2  square matrices representing the Laplacian 
operator and coefficients α and/or β; X and Y are the vectors representing the animation frame 
and its source density, respectively. Also, I is a unit matrix. Even if n by m resolution, the 
state variable modification has led to the mn××2 th system of equations. Let us consider the 
homogeneous equation of Eqn. 12, 
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then the normalized characteristic vectors ,2,...,2,1, mnii ××=E  of the matrix Γ  are obtained. 
Consequently, diagonalization of Eqn. 12 can be carried out by the modal matrix Z constituted 
by the vectors ,2,...,2,1, mnii ××=E  as its column vectors, and then the general solution Eqn. 
15 is obtained. 
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where 0iw  is an initial value of the coefficient iw , which can be derived from the starting 
vector 0X  representing stating image of animation, i.e.,  
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The starting vector X0 is determined by a starting animation frame 0U . The final frame ∞U  is 
given in terms of the steady state solution vector X∞. Thus, if the starting image 0U  is given 
in terms of the starting vector X0 and the final ∞U  images is given in terms of the input vector 
Y, then any images between the times 0=t  and ∞=t  can be generated as the solution of Eqn. 
11. Each of the local moving speeds depends on the selection of the parameters α and β. More 
precisely, the solution of Eqn. 12 is classified into three cases. The first is a simple time 
damping solution; the second is a damping or spreading oscillation; and the third is a pure 
oscillation solution. The characteristic values ,2,...,2,1, mnii ××=λ  of the first, second and 
third cases become the pure real, complex and pure imaginary numbers, respectively. Since 
each of the coefficients ,2,...,2,1, mniwi ××=  is possible to take the distinct characteristic 
value iλ , then a locally moving animation can be generated. An example of animation 
generation is shown in Fig. 4. A lady wrinkling is obtained from two frames shown in Figs. 4 
(a) and (e). 

 

   
(a) Initial (b) Generated 1 (c) Generated 2 (d) Generated 2 (e) Final 

Figure. 4 Animation generation by Helmholtz equation. 

CONCLUSIONS 

As shown above, we have proposed the new strategy for the image processing by 
means of the field theory. Regarding pixels representing an image as a kind of potential leads 
us to image vector operations. After that the image partial differential equations has been 
derived. The static and animation images can be obtained as the solution of the Poisson and 
the Helmholtz types of partial differential equations, respectively. This paper has described 
the solution strategies of them and we have succeeded in generating images with new 
methodology. Furthermore, handling of a monochrome and a color image has been described 
in our image processing strategy. As a result, it has been clarified that any images can be 
handled in much the same way as the field theory in the classical physics.  
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